Biomass can be stored and converted into any form of energy. Hydrogen is a 'clean' energy source: its combustion produces only water and energy. A new, eco-friendly reservoir of hydrogen is required to achieve clean and sustainable energy production. Ethanol is a suitable biofuel in this respect, being easy to produce and safe to handle, transport and store. Bioethanol plays an important role as a promising renewable energy source due to its useful properties; it can also be converted to hydrogen-rich gas through a simple reforming process, and is potentially ideal for molten carbonate fuel cells (MCFCs). © 2014 Woodhead Publishing Limited All rights reserved.

Direct bioethanol fuel cells

Moreno, A.;McPhail, S.;Cigolotti, V.
2013-01-01

Abstract

Biomass can be stored and converted into any form of energy. Hydrogen is a 'clean' energy source: its combustion produces only water and energy. A new, eco-friendly reservoir of hydrogen is required to achieve clean and sustainable energy production. Ethanol is a suitable biofuel in this respect, being easy to produce and safe to handle, transport and store. Bioethanol plays an important role as a promising renewable energy source due to its useful properties; it can also be converted to hydrogen-rich gas through a simple reforming process, and is potentially ideal for molten carbonate fuel cells (MCFCs). © 2014 Woodhead Publishing Limited All rights reserved.
2013
978-085709545-9
Bioethanol;Catalysis;Molten carbonate fuel cell (MCFC);Steam reforming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/6218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact