In this study, we investigate a Schottky junction based on solution-processed multilayered graphene (MLG). We present a rectifying device obtained with a straightforward approach, that is drop-casting a few microliters of MLG solution simultaneously onto Si, Si-SiO2 and Si-SiO2-Cr/Au surface. Monitoring the modulation of Schottky barrier height while operating in reverse bias, we study the behavior of such prepared MLG-Si/junction (MLG-Si/J) when exposed to oxidizing atmosphere, especially to nitrogen oxide (NO2). We finally compare the sensing behavior of MLG-Si/J at 1 ppm of NO2 with that of a chemiresistor-based on similarly prepared solution-processed MLG. Our study thus opens the path towards low-cost highly sensitive graphene-based heterojunctions advantageously fabricated without any complexity in the technological process.
Investigation of multi-layered graphene/silicon Schottky junction in oxidizing atmosphere
Miscioscia R.;Miglietta M. L.;Polichetti T.
2021-01-01
Abstract
In this study, we investigate a Schottky junction based on solution-processed multilayered graphene (MLG). We present a rectifying device obtained with a straightforward approach, that is drop-casting a few microliters of MLG solution simultaneously onto Si, Si-SiO2 and Si-SiO2-Cr/Au surface. Monitoring the modulation of Schottky barrier height while operating in reverse bias, we study the behavior of such prepared MLG-Si/junction (MLG-Si/J) when exposed to oxidizing atmosphere, especially to nitrogen oxide (NO2). We finally compare the sensing behavior of MLG-Si/J at 1 ppm of NO2 with that of a chemiresistor-based on similarly prepared solution-processed MLG. Our study thus opens the path towards low-cost highly sensitive graphene-based heterojunctions advantageously fabricated without any complexity in the technological process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.