The aim of this work is to propose a unified (generalized) closure of the chemical source term in the context of Large Eddy Simulation able to cover all the regimes of turbulent premixed combustion. Turbulence/combustion scale interaction is firstly analyzed: a new perspective to look at commonly accepted combustion diagrams is provided based on the evidence that actual turbulent flames can experience locally several combustion regimes although global non-dimensional numbers would locate such flames in a single specific operating point of the standard combustion diagram. The deliverable is a LES subgrid scale model for turbulent premixed flames named Localized Turbulent Scales Model (LTSM). This is founded on the estimation of the local reacting volume fraction of a computational cell that is related to the local turbulent and laminar flame speeds and to the local flame thickness.

A combustion regime-based model for large eddy simulation

Giacomazzi E.;Cecere D.
2021-01-01

Abstract

The aim of this work is to propose a unified (generalized) closure of the chemical source term in the context of Large Eddy Simulation able to cover all the regimes of turbulent premixed combustion. Turbulence/combustion scale interaction is firstly analyzed: a new perspective to look at commonly accepted combustion diagrams is provided based on the evidence that actual turbulent flames can experience locally several combustion regimes although global non-dimensional numbers would locate such flames in a single specific operating point of the standard combustion diagram. The deliverable is a LES subgrid scale model for turbulent premixed flames named Localized Turbulent Scales Model (LTSM). This is founded on the estimation of the local reacting volume fraction of a computational cell that is related to the local turbulent and laminar flame speeds and to the local flame thickness.
2021
Large eddy simulation
Micro-scale interaction
Premixed combustion regimes
Premixed turbulent combustion
Subgrid scale model
File in questo prodotto:
File Dimensione Formato  
A Combustion Regime-Based Model for Large Eddy Simulation.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.1 MB
Formato Adobe PDF
4.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/62622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact