Aquaponics systems and technologies are growing primary industries in many countries, with high environmental and socio-economic advantages. Aquaponics is a closed-loop system that produces aquatic animals and plants in a new way using recirculated water and nutrients. With a growing world population expected to reach 9.7 billion by 2050, food production sustainability is a primary issue in today’s world agenda, and aquaponics and aquaculture systems can be potential contributors to the challenge. Observing the climate changes and global warming’s impact on the ecosystem, decreasing aqua animal stocks, and responding to increasing demand are turning points in the sustainability era. In the past 15 years, fish production has doubled, thus denoting that aquaponics transforms into commercial scales with a revolutionized production, high efficiency, and fewer resources’ utilization, thus requiring proper operation and management standards and practices. Therefore, this study aims to shape a new framework for sustainable aquaponics modeling and utilization as the all-in-one solution platform covering technical, managerial, socio-economic, institutional, and environmental measures within the suitability requirements. The proposed model in this study offers a systematic approach to the design and implementation of sustainability-efficient aquaponics and aquaculture systems. Through an exhaustive coverage of the topic, this research effort can be counted as a practical reference for researchers, scholars, experts, practitioners, and students in the context of aquaponics and aquaculture studies.

A forefront framework for sustainable aquaponics modeling and design

Grilli M. L.;
2021-01-01

Abstract

Aquaponics systems and technologies are growing primary industries in many countries, with high environmental and socio-economic advantages. Aquaponics is a closed-loop system that produces aquatic animals and plants in a new way using recirculated water and nutrients. With a growing world population expected to reach 9.7 billion by 2050, food production sustainability is a primary issue in today’s world agenda, and aquaponics and aquaculture systems can be potential contributors to the challenge. Observing the climate changes and global warming’s impact on the ecosystem, decreasing aqua animal stocks, and responding to increasing demand are turning points in the sustainability era. In the past 15 years, fish production has doubled, thus denoting that aquaponics transforms into commercial scales with a revolutionized production, high efficiency, and fewer resources’ utilization, thus requiring proper operation and management standards and practices. Therefore, this study aims to shape a new framework for sustainable aquaponics modeling and utilization as the all-in-one solution platform covering technical, managerial, socio-economic, institutional, and environmental measures within the suitability requirements. The proposed model in this study offers a systematic approach to the design and implementation of sustainability-efficient aquaponics and aquaculture systems. Through an exhaustive coverage of the topic, this research effort can be counted as a practical reference for researchers, scholars, experts, practitioners, and students in the context of aquaponics and aquaculture studies.
2021
Aquaculture
Aquaponics
Aquaponics design
Aquaponics modeling
Aquaponics sustainability
File in questo prodotto:
File Dimensione Formato  
A Forefront Framework for Sustainable Aquaponics Modeling and Design.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/62861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
social impact