Ion beam induced luminescence (IBIL) spectra of pure LiF under irradiation by a 2 MeV proton beam were analyzed as a function of the dose in order to deepen the kinetic mechanisms underlying the formation of luminescent point defects. The intensity evolution with dose at several emission wavelengths has been studied within a wide spectral interval, from ultraviolet (UV) to near infrared (NIR), and their different change rates have been correlated to the electronic defect formation processes. The intensity at few selected wavelengths was analyzed with a multiple linear regression (MLR) method in order to demonstrate that a linear calibration curve can be obtained and that an on-line optical dose monitor for ion beams can be realized. © 2015 Elsevier B.V. All rights reserved.

Ion beam induced luminescence analysis of defect evolution in lithium fluoride under proton irradiation

Montereali, R.M.;Piccinini, M.
2015-01-01

Abstract

Ion beam induced luminescence (IBIL) spectra of pure LiF under irradiation by a 2 MeV proton beam were analyzed as a function of the dose in order to deepen the kinetic mechanisms underlying the formation of luminescent point defects. The intensity evolution with dose at several emission wavelengths has been studied within a wide spectral interval, from ultraviolet (UV) to near infrared (NIR), and their different change rates have been correlated to the electronic defect formation processes. The intensity at few selected wavelengths was analyzed with a multiple linear regression (MLR) method in order to demonstrate that a linear calibration curve can be obtained and that an on-line optical dose monitor for ion beams can be realized. © 2015 Elsevier B.V. All rights reserved.
2015
Ion beam induced luminescence;Multiple linear regression;Lithium fluoride
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact