The present work analyses a hybrid free electron laser (FEL) scheme where the oscillator is based on a radiation source operating with a slow-wave guiding structure as, for instance, a Cerenkov FEL or a Smith–Purcell FEL. Such devices, often running in transverse magnetic (TM) modes, present a longitudinal electric field which can easily affect the longitudinal electrons’ velocities, inducing an energy modulation on the beam. Such a modulation, properly controlled, can induce a strong radiation emission in a magnetic undulator properly designed to operate as a radiator. General considerations will be exposed together with a practical numerical example in the far infrared region of the spectrum.
Hybrid (Oscillator-amplifier) free electron laser and new proposals
Doria A.
2021-01-01
Abstract
The present work analyses a hybrid free electron laser (FEL) scheme where the oscillator is based on a radiation source operating with a slow-wave guiding structure as, for instance, a Cerenkov FEL or a Smith–Purcell FEL. Such devices, often running in transverse magnetic (TM) modes, present a longitudinal electric field which can easily affect the longitudinal electrons’ velocities, inducing an energy modulation on the beam. Such a modulation, properly controlled, can induce a strong radiation emission in a magnetic undulator properly designed to operate as a radiator. General considerations will be exposed together with a practical numerical example in the far infrared region of the spectrum.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.