This paper presents a study of the interaction between Alfvén modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed. At low energetic particle concentration, the zonal structure (identified as an energetic particle-driven geodesic acoustic mode) is more unstable than the Alfvén mode. In the regime at high energetic particle concentration, the Alfvén mode is more unstable than the zonal structure. The interplay between the modes leads to a modification of their growth rates as well as to a modification of their saturation levels. The theoretical explanation of the mode interaction is given in terms of three-wave coupling of the energetic particle-driven geodesic acoustic mode and Alfvén mode, mediated by the curvature-pressure coupling term of the energetic particles.

Gyrokinetic investigation of the nonlinear interaction of Alfvén instabilities and energetic particle-driven geodesic acoustic modes

Vlad G.
2021-01-01

Abstract

This paper presents a study of the interaction between Alfvén modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed. At low energetic particle concentration, the zonal structure (identified as an energetic particle-driven geodesic acoustic mode) is more unstable than the Alfvén mode. In the regime at high energetic particle concentration, the Alfvén mode is more unstable than the zonal structure. The interplay between the modes leads to a modification of their growth rates as well as to a modification of their saturation levels. The theoretical explanation of the mode interaction is given in terms of three-wave coupling of the energetic particle-driven geodesic acoustic mode and Alfvén mode, mediated by the curvature-pressure coupling term of the energetic particles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/64129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact