The development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO) is a key issue within the EUROfusion roadmap. The DEMO reactor is designed to produce a fusion power of about 2 GW and generate a substantial amount of electricity, relying on a closed tritium fuel cycle: it implies that the breeding blanket (BB) shall guarantee a suitable tritium production to enable a continuous operation without any external supply. The Water-Cooled Lithium Lead (WCLL) concept is a candidate for the DEMO BB: it uses liquid Lithium Lead as breeder and neutron multiplier and water in PWR condition as coolant. The neutronics analyses carried out in the past have been performed using a semi-heterogeneous representation of the BB, since the complexity of its structure makes the generation of a detailed MCNP model a very demanding and challenging task. Results highlighted good performances for the WCLL BB, both in terms of shielding effectiveness and tritium self-sufficiency. A recently updated assessment of the tritium breeding ratio (TBR) requirement for DEMO, considering margins for calculation uncertainties and incomplete models of the whole machine, led to the definition of a tentative 1.15 value for the TBR. Moreover, the implementation of an accurate BB neutronics model, consistent with the engineering design, is recommended for the evaluation of the tritium self-sufficiency. In order to tackle these issues, an MCNP model of the DEMO tokamak, integrating a fully heterogeneous WCLL BB has been developed for the first time, including an accurate description of the FW water channels, as well as a comprehensive definition of the breeding zone inner structure. A complete assessment of the WCLL BB nuclear performances, through 3D neutron and gamma transport simulations, has been carried out by means the MCNP Monte Carlo code and JEFF nuclear libraries.
Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model
F. Moro;P. Arena;A. Colangeli;A. Del Nevo;D. Flammini;N. Fonnesu;G. Mariano;R. Villari
2021-01-01
Abstract
The development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO) is a key issue within the EUROfusion roadmap. The DEMO reactor is designed to produce a fusion power of about 2 GW and generate a substantial amount of electricity, relying on a closed tritium fuel cycle: it implies that the breeding blanket (BB) shall guarantee a suitable tritium production to enable a continuous operation without any external supply. The Water-Cooled Lithium Lead (WCLL) concept is a candidate for the DEMO BB: it uses liquid Lithium Lead as breeder and neutron multiplier and water in PWR condition as coolant. The neutronics analyses carried out in the past have been performed using a semi-heterogeneous representation of the BB, since the complexity of its structure makes the generation of a detailed MCNP model a very demanding and challenging task. Results highlighted good performances for the WCLL BB, both in terms of shielding effectiveness and tritium self-sufficiency. A recently updated assessment of the tritium breeding ratio (TBR) requirement for DEMO, considering margins for calculation uncertainties and incomplete models of the whole machine, led to the definition of a tentative 1.15 value for the TBR. Moreover, the implementation of an accurate BB neutronics model, consistent with the engineering design, is recommended for the evaluation of the tritium self-sufficiency. In order to tackle these issues, an MCNP model of the DEMO tokamak, integrating a fully heterogeneous WCLL BB has been developed for the first time, including an accurate description of the FW water channels, as well as a comprehensive definition of the breeding zone inner structure. A complete assessment of the WCLL BB nuclear performances, through 3D neutron and gamma transport simulations, has been carried out by means the MCNP Monte Carlo code and JEFF nuclear libraries.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.