Today the technical limit for solar towers is represented by the temperature that can be reached with current accumulation and exchange fluids (molten salts are generally adopted and the max temperatures are generally below 600◦ C), even if other solutions have been suggested that reach 800◦ C. An innovative solution based on liquid lead has been proposed in an ongoing experimental project named Nextower. The Nextower project aims to improve current technologies of the solar sector by transferring experience, originally consolidated in the field of nuclear plants, to accumulate heat at higher temperatures (T = 850–900◦ C) through the use of liquid lead heat exchangers. The adoption of molten lead as a heat exchange fluid poses important criticalities of both corrosion and creep resistance, due to the temperatures and structural stresses reached during service. Liquid lead corrosion issues and solutions in addition to creep-resistant material selection are discussed. The experimental activities focused on technical solutions adopted to overcome these problems in terms of the selected materials and technologies. Corrosion laboratory tests have been designed in order to verify if structural 800H steel coated with 6 mm of FeCrAl alloy layers are able to resist the liquid lead attack up to 900◦ C and for 1000 h or more. The metallographic results were obtained by mean of scanning electron microscopy with an energy dispersive microprobe confirm that the 800H steel shows no sign of corrosion after the completion of the tests.

Materials for high temperature liquid lead storage for concentrated solar power (Csp) air tower systems

Rinaldi A.;Barbieri G.;
2021-01-01

Abstract

Today the technical limit for solar towers is represented by the temperature that can be reached with current accumulation and exchange fluids (molten salts are generally adopted and the max temperatures are generally below 600◦ C), even if other solutions have been suggested that reach 800◦ C. An innovative solution based on liquid lead has been proposed in an ongoing experimental project named Nextower. The Nextower project aims to improve current technologies of the solar sector by transferring experience, originally consolidated in the field of nuclear plants, to accumulate heat at higher temperatures (T = 850–900◦ C) through the use of liquid lead heat exchangers. The adoption of molten lead as a heat exchange fluid poses important criticalities of both corrosion and creep resistance, due to the temperatures and structural stresses reached during service. Liquid lead corrosion issues and solutions in addition to creep-resistant material selection are discussed. The experimental activities focused on technical solutions adopted to overcome these problems in terms of the selected materials and technologies. Corrosion laboratory tests have been designed in order to verify if structural 800H steel coated with 6 mm of FeCrAl alloy layers are able to resist the liquid lead attack up to 900◦ C and for 1000 h or more. The metallographic results were obtained by mean of scanning electron microscopy with an energy dispersive microprobe confirm that the 800H steel shows no sign of corrosion after the completion of the tests.
2021
Alloy 800H
FeCrAl alloys
Lead corrosion
Solar concentrated towers
Solar system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/64509
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact