The eutectic alloy Lithium Lead (LiPb) enriched at 90 % in 6Li is the breeder material for one of the candidate European Breeding Blanket (BB) concepts. Currently under investigation for DEMO reactor, the Water Cooled Lithium-Lead (WCLL), and for the WCLL Test Blanket Module (TBM) that will be qualified in the ITER reactor. The LiPb alloy is used as tritium breeder, neutron multiplier and tritium carrier. The design of the LiPb loops is currently under study and the conceptual design of the main loop components has been completed. For this reason, it becomes mandatory to proceed with the integration of the LiPb loops in the EU DEMO Tokamak building, checking the consistency of the different systems design to be integrated in DEMO reactor building. CAD design and integration of the entire LiPb loops are shown taking into account the building areas assigned, the interfaces with the other systems and the requirement related to the LiPb loop functions. An initial layout of the pipework and the position of the main components have been defined on the basis of the following design requirements: (I) gamma radiation shielding of the components and the pipework; (II) target flow velocity of the LiPb; (III) thermal expansion of the pipes; (IV) possibility to drain the entire loop; (V) redundancy of the loops; (VI) remote maintenance; (VII) position in the building and dimensions of the storage tanks. The 3D model of the entire loops has been provided and integrated in DEMO Tokamak building pointing out the issues related to the interfaces with the other systems and with the building itself.

Integration of LiPb loops for WCLL BB of European DEMO

Utili M.;Tincani A.;
2021

Abstract

The eutectic alloy Lithium Lead (LiPb) enriched at 90 % in 6Li is the breeder material for one of the candidate European Breeding Blanket (BB) concepts. Currently under investigation for DEMO reactor, the Water Cooled Lithium-Lead (WCLL), and for the WCLL Test Blanket Module (TBM) that will be qualified in the ITER reactor. The LiPb alloy is used as tritium breeder, neutron multiplier and tritium carrier. The design of the LiPb loops is currently under study and the conceptual design of the main loop components has been completed. For this reason, it becomes mandatory to proceed with the integration of the LiPb loops in the EU DEMO Tokamak building, checking the consistency of the different systems design to be integrated in DEMO reactor building. CAD design and integration of the entire LiPb loops are shown taking into account the building areas assigned, the interfaces with the other systems and the requirement related to the LiPb loop functions. An initial layout of the pipework and the position of the main components have been defined on the basis of the following design requirements: (I) gamma radiation shielding of the components and the pipework; (II) target flow velocity of the LiPb; (III) thermal expansion of the pipes; (IV) possibility to drain the entire loop; (V) redundancy of the loops; (VI) remote maintenance; (VII) position in the building and dimensions of the storage tanks. The 3D model of the entire loops has been provided and integrated in DEMO Tokamak building pointing out the issues related to the interfaces with the other systems and with the building itself.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/64767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact