Human papillomavirus (HPV) type 16 is the etiologic agent of more than 50% anal/cervical cancers and about 20% oropharyngeal cancers. HPV16 E6 and E7 oncogenes favor the transformation and are essential for maintaining the transformed status. Serum anti-E6 and anti-E7 antibodies appear to have prognostic significance for HPV-associated cancers. However, most of the previous attempts to establish diagnostic tools based on serum detection of E6 and/or E7 antibodies have been unsuccessful, mainly due to the low accuracy of applied tests. This paper reports on a feasibility study to prove the possibility to easily immobilize HPV16 E7 onto electrospun substrates for application in diagnostic tools. In this study, poly(ϵ-caprolactone) electrospun scaffolds (called ePCL) are used to provide a microstructured substrate with a high surface-to-volume ratio, capable of binding E7 proteins when used for enzyme-linked immunosorbent assay (ELISA) tests. ePCL functionalized with E7 exhibited superior properties compared to standard polystyrene plates, increasing the detection signal from serum antibodies by 5-6 times. Analysis of the serum samples from mice immunized with HPV16 E7 DNA vaccine showed higher efficiency of this new anti-E7 ePCL-ELISA test vs control in E7-specific antibody detection. In addition, ePCL-E7-ELISA is prepared with a relatively low amount of antigen, decreasing the manufacturing costs.

EPCL Electrospun Microfibrous Layers for Immune Assays: Sensitive ELISA for the Detection of Serum Antibodies against HPV16 E7 Oncoprotein

Franconi R.;Massa S.;Rinaldi A.;
2021-01-01

Abstract

Human papillomavirus (HPV) type 16 is the etiologic agent of more than 50% anal/cervical cancers and about 20% oropharyngeal cancers. HPV16 E6 and E7 oncogenes favor the transformation and are essential for maintaining the transformed status. Serum anti-E6 and anti-E7 antibodies appear to have prognostic significance for HPV-associated cancers. However, most of the previous attempts to establish diagnostic tools based on serum detection of E6 and/or E7 antibodies have been unsuccessful, mainly due to the low accuracy of applied tests. This paper reports on a feasibility study to prove the possibility to easily immobilize HPV16 E7 onto electrospun substrates for application in diagnostic tools. In this study, poly(ϵ-caprolactone) electrospun scaffolds (called ePCL) are used to provide a microstructured substrate with a high surface-to-volume ratio, capable of binding E7 proteins when used for enzyme-linked immunosorbent assay (ELISA) tests. ePCL functionalized with E7 exhibited superior properties compared to standard polystyrene plates, increasing the detection signal from serum antibodies by 5-6 times. Analysis of the serum samples from mice immunized with HPV16 E7 DNA vaccine showed higher efficiency of this new anti-E7 ePCL-ELISA test vs control in E7-specific antibody detection. In addition, ePCL-E7-ELISA is prepared with a relatively low amount of antigen, decreasing the manufacturing costs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/65048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact