Crocetin biosynthesis in Buddleja davidii flowers proceeds through a zeaxanthin cleavage pathway catalyzed by two carotenoid cleavage dioxygenases (BdCCD4.1 and BdCCD4.3), followed by oxidation and glucosylation reactions that lead to the production of crocins. We isolated and analyzed the expression of 12 genes from the carotenoid pathway in B. davidii flowers and identified four candidate genes involved in the biosynthesis of crocins (BdALDH, BdUGT74BC1, BdUGT74BC2, and BdUGT94AA3). In addition, we characterized the profile of crocins and their carotenoid precursors, following their accumulation during flower development. Overall, seven different crocins, crocetin, and picrocrocin were identified in this study. The accumulation of these apocarotenoids parallels tissue development, reaching the highest concentration when the flower is fully open. Notably, the pathway was regulated mainly at the transcript level, with expression patterns of a large group of carotenoid precursor and apocarotenoid genes (BdPSY2, BdPDS2, BdZDS, BdLCY2, BdBCH, BdALDH, and BdUGT Genes) mimicking the accumulation of crocins. Finally, we used comparative correlation network analysis to study how the synthesis of these valuable apocarotenoids diverges among B. davidii, Gardenia jasminoides, and Crocus sativus, highlighting distinctive differences which could be the basis of the differential accumulation of crocins in the three species.

Identification and characterization of apocarotenoid modifiers and carotenogenic enzymes for biosynthesis of crocins in Buddleja davidii flowers

Diretto G.;Frusciante S.;
2021-01-01

Abstract

Crocetin biosynthesis in Buddleja davidii flowers proceeds through a zeaxanthin cleavage pathway catalyzed by two carotenoid cleavage dioxygenases (BdCCD4.1 and BdCCD4.3), followed by oxidation and glucosylation reactions that lead to the production of crocins. We isolated and analyzed the expression of 12 genes from the carotenoid pathway in B. davidii flowers and identified four candidate genes involved in the biosynthesis of crocins (BdALDH, BdUGT74BC1, BdUGT74BC2, and BdUGT94AA3). In addition, we characterized the profile of crocins and their carotenoid precursors, following their accumulation during flower development. Overall, seven different crocins, crocetin, and picrocrocin were identified in this study. The accumulation of these apocarotenoids parallels tissue development, reaching the highest concentration when the flower is fully open. Notably, the pathway was regulated mainly at the transcript level, with expression patterns of a large group of carotenoid precursor and apocarotenoid genes (BdPSY2, BdPDS2, BdZDS, BdLCY2, BdBCH, BdALDH, and BdUGT Genes) mimicking the accumulation of crocins. Finally, we used comparative correlation network analysis to study how the synthesis of these valuable apocarotenoids diverges among B. davidii, Gardenia jasminoides, and Crocus sativus, highlighting distinctive differences which could be the basis of the differential accumulation of crocins in the three species.
2021
Aldehyde dehydrogenase
apocarotenoids
carotenoid cleavage dioxygenases
carotenoids
crocins
flower
glucosyltransferase
picrocrocin
Carotenoids
Flowers
Buddleja
Crocus
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/65067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact