The approach to equilibrium of quantum mechanical systems is a topic as old as quantum mechanics itself, but has recently seen a surge of interest due to applications in quantum technologies, including, but not limited to, quantum computation and sensing. The mechanisms by which a quantum system approaches its long-time, limiting stationary state are fascinating and, sometimes, quite different from their classical counterparts. In this respect, quantum networks represent mesoscopic quantum systems of interest. In such a case, the graph encodes the elementary quantum systems (say qubits) at its vertices, while the links define the interactions between them. We study here the relaxation to equilibrium for a fully connected quantum network with controlled-not (cnot) gates representing the interaction between the constituting qubits. We give a number of results for the equilibration in these systems, including analytic estimates. The results are checked using numerical methods for systems with up to 15-16 qubits. It is emphasized in which way the size of the network controls the convergency.
Relaxation to equilibrium in controlled- not quantum networks
Mariano A.;
2021-01-01
Abstract
The approach to equilibrium of quantum mechanical systems is a topic as old as quantum mechanics itself, but has recently seen a surge of interest due to applications in quantum technologies, including, but not limited to, quantum computation and sensing. The mechanisms by which a quantum system approaches its long-time, limiting stationary state are fascinating and, sometimes, quite different from their classical counterparts. In this respect, quantum networks represent mesoscopic quantum systems of interest. In such a case, the graph encodes the elementary quantum systems (say qubits) at its vertices, while the links define the interactions between them. We study here the relaxation to equilibrium for a fully connected quantum network with controlled-not (cnot) gates representing the interaction between the constituting qubits. We give a number of results for the equilibration in these systems, including analytic estimates. The results are checked using numerical methods for systems with up to 15-16 qubits. It is emphasized in which way the size of the network controls the convergency.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.