In this study, we investigated thermophilic (55◦C) anaerobic digestion (AD) performance and microbial community structure, before and after hydrogen addition, in a novel hybrid gas-stirred tank reactor (GSTR) implemented with a partial immobilization of the microbial community and fed with second cheese whey (SCW). The results showed that H2 addition led to a 25% increase in the methane production rate and to a decrease of 13% in the CH4 concentration as compared with the control. The recovery of methane content (56%) was reached by decreasing the H2 flow rate. The microbial community investigations were performed on effluent (EF) and on interstitial matrix (IM) inside the immobilized area. Before H2 addition, the Anaerobaculaceae (42%) and Lachnospiraceae (27%) families dominated among bacteria in the effluent, and the Thermodesulfobiaceae (32%) and Lachnospiraceae (30%) families dominated in the interstitial matrix. After H2 addition, microbial abundance showed an increase in the bacteria and archaea communities in the interstitial matrix. The Thermodesulfobiaceae family (29%)remained dominant in the interstitial matrix, suggesting its crucial role in the immobilized community and the SHA-31 family was enriched in both the effluent (36%) and the interstitial matrix (15%). The predominance of archaea Methanothermobacter thermoautrophicus indicated that CH4 was produced almost exclusively by the hydrogenotrophic pathway.

Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor

Rosa, Silvia;Marone, Antonella;Massini, Giulia;Signorini, Antonella
2020-01-01

Abstract

In this study, we investigated thermophilic (55◦C) anaerobic digestion (AD) performance and microbial community structure, before and after hydrogen addition, in a novel hybrid gas-stirred tank reactor (GSTR) implemented with a partial immobilization of the microbial community and fed with second cheese whey (SCW). The results showed that H2 addition led to a 25% increase in the methane production rate and to a decrease of 13% in the CH4 concentration as compared with the control. The recovery of methane content (56%) was reached by decreasing the H2 flow rate. The microbial community investigations were performed on effluent (EF) and on interstitial matrix (IM) inside the immobilized area. Before H2 addition, the Anaerobaculaceae (42%) and Lachnospiraceae (27%) families dominated among bacteria in the effluent, and the Thermodesulfobiaceae (32%) and Lachnospiraceae (30%) families dominated in the interstitial matrix. After H2 addition, microbial abundance showed an increase in the bacteria and archaea communities in the interstitial matrix. The Thermodesulfobiaceae family (29%)remained dominant in the interstitial matrix, suggesting its crucial role in the immobilized community and the SHA-31 family was enriched in both the effluent (36%) and the interstitial matrix (15%). The predominance of archaea Methanothermobacter thermoautrophicus indicated that CH4 was produced almost exclusively by the hydrogenotrophic pathway.
2020
Anaerobic hybrid reactor
Cheese whey
In situ hydrogen addition
Microbial community
Thermophilic anaerobic digestion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/66290
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact