The increasingly widespread use of electric vehicles requires proper planning of the charging infrastructure. In addition to the correct identification of the optimal positions, this concerns the accurate sizing of the charging station with respect to energy needs and the management of power flows. In particular, if we consider the presence of a renewable energy source and a storage system, we can identify strategies to maximize the use of renewable energy, minimizing the purchase costs from the grid. This study uses real charging data for some public stations, which include “normal” chargers (3 kW and 7 kW) and “quick” ones (43 kW and 55 kW), for the optimal sizing of a photovoltaic system with stationary storage. Battery degradation due to use is included in the evaluation of the overall running costs of the station. In this study, two different cost models for battery degradation and their influence on energy flow management are compared, along with their impact on battery life.

Influence of Battery Aging on the Operation of a Charging Infrastructure

Andrenacci N.;
2022-01-01

Abstract

The increasingly widespread use of electric vehicles requires proper planning of the charging infrastructure. In addition to the correct identification of the optimal positions, this concerns the accurate sizing of the charging station with respect to energy needs and the management of power flows. In particular, if we consider the presence of a renewable energy source and a storage system, we can identify strategies to maximize the use of renewable energy, minimizing the purchase costs from the grid. This study uses real charging data for some public stations, which include “normal” chargers (3 kW and 7 kW) and “quick” ones (43 kW and 55 kW), for the optimal sizing of a photovoltaic system with stationary storage. Battery degradation due to use is included in the evaluation of the overall running costs of the station. In this study, two different cost models for battery degradation and their influence on energy flow management are compared, along with their impact on battery life.
2022
battery aging
charging infrastructures
EV charging
PV and battery integration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/66608
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact