Despite their positive effects on the decarbonization of energy systems, renewable energy sources can dramatically influence the short-term scheduling of distributed energy resources (DER) in smart grids due to their intermittent and non-programmable nature. Renewables’ uncertainties need to be properly considered in order to avoid DER operation strategies that may deviate from the optimal ones. This paper presents a comprehensive tool for the scenario generation of solar irradiance profiles by using historical data for a specific location. The tool is particularly useful for creating scenarios in the context of the stochastic operation optimization of DER systems. Making use of the Roulette Wheel mechanism for generating an initial set of scenarios, the tool applies a reduction process based on the Fast-Forward method, which allows the preservation of the most representative ones while reducing the computational efforts in the next potential stochastic optimization phase. From the application of the proposed tool to a numerical case study, it emerged that plausible scenarios are generated for solar irradiance profiles to be used as input for DER stochastic optimization purposes. Moreover, the high flexibility of the proposed tool allows the estimation of the behavior of the stochastic operation optimization of DER in the presence of more fluctuating but plausible solar irradiance patterns. A sensitivity analysis has also been carried out to evaluate the impact of key parameters, such as the number of regions, a metric, and a specific parameter used for the outlier removal process on the generated solar irradiance profiles, by showing their influence on their smoothness and variability. The results of this analysis are found to be particularly suitable to guide users in the definition of scenarios with specific characteristics.

A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles

Buonanno A.;Caliano M.;Di Somma M.;Graditi G.;Valenti M.
2022-01-01

Abstract

Despite their positive effects on the decarbonization of energy systems, renewable energy sources can dramatically influence the short-term scheduling of distributed energy resources (DER) in smart grids due to their intermittent and non-programmable nature. Renewables’ uncertainties need to be properly considered in order to avoid DER operation strategies that may deviate from the optimal ones. This paper presents a comprehensive tool for the scenario generation of solar irradiance profiles by using historical data for a specific location. The tool is particularly useful for creating scenarios in the context of the stochastic operation optimization of DER systems. Making use of the Roulette Wheel mechanism for generating an initial set of scenarios, the tool applies a reduction process based on the Fast-Forward method, which allows the preservation of the most representative ones while reducing the computational efforts in the next potential stochastic optimization phase. From the application of the proposed tool to a numerical case study, it emerged that plausible scenarios are generated for solar irradiance profiles to be used as input for DER stochastic optimization purposes. Moreover, the high flexibility of the proposed tool allows the estimation of the behavior of the stochastic operation optimization of DER in the presence of more fluctuating but plausible solar irradiance patterns. A sensitivity analysis has also been carried out to evaluate the impact of key parameters, such as the number of regions, a metric, and a specific parameter used for the outlier removal process on the generated solar irradiance profiles, by showing their influence on their smoothness and variability. The results of this analysis are found to be particularly suitable to guide users in the definition of scenarios with specific characteristics.
2022
scenario generation
scenario reduction
smart grid
solar irradiance profiles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/66967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact