Aimed at the growing interest in printed batteries, widely used industrial gravure printing was recently proven to be able to produce high-quality electrodes for lithium-ion batteries (LiBs), demonstrating its utility in the study of new functional materials. Here, for the first time, gravure printing was investigated for the mass production of well-known low-cost graphite-based anodes for LiBs. Graphite was also chosen as a case study to explore the influence of process parameters on the layer microstructure and the performance of the printed anodes. In particular, upon decreasing the size of the active material nanoparticles through ball-milling, an enhancement in anode performance was observed, which is related to an improvement in the material distribution in the printed layer, even in the case of increasing mass loading through a multilayer approach. A further improvement in performance, close to the theoretical capacity, was possible by changing the ink parameters, obtaining a denser microstructure of the printed anode. Such good results further demonstrate the possibility of using gravure printing for the mass production of electrodes for printed batteries and, in general, components in the field of energy.

Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries

Montanino M.;De Girolamo Del Mauro A.;Paoletti C.;Sico G.
2022-01-01

Abstract

Aimed at the growing interest in printed batteries, widely used industrial gravure printing was recently proven to be able to produce high-quality electrodes for lithium-ion batteries (LiBs), demonstrating its utility in the study of new functional materials. Here, for the first time, gravure printing was investigated for the mass production of well-known low-cost graphite-based anodes for LiBs. Graphite was also chosen as a case study to explore the influence of process parameters on the layer microstructure and the performance of the printed anodes. In particular, upon decreasing the size of the active material nanoparticles through ball-milling, an enhancement in anode performance was observed, which is related to an improvement in the material distribution in the printed layer, even in the case of increasing mass loading through a multilayer approach. A further improvement in performance, close to the theoretical capacity, was possible by changing the ink parameters, obtaining a denser microstructure of the printed anode. Such good results further demonstrate the possibility of using gravure printing for the mass production of electrodes for printed batteries and, in general, components in the field of energy.
2022
anodes
graphite
gravure printing
lithium-ion batteries
multilayer
printed batteries
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/67152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact