Alfvén eigenmode (AE) instabilities driven by alpha-particles have been observed in D-3He fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-3He fusion reaction, the three-ion radio frequency scenario was used to accelerate the neutral beam injection 100 keV deuterons to higher energies in the core of mixed D-3He plasmas at high concentrations of 3He. A large variety of fast-ion driven magnetohydrodynamic modes were observed, including the elliptical Alfvén eigenmodes (EAEs) with mode numbers n = -1 and axisymmetric modes with n = 0 in the frequency range of EAEs. The simultaneous observation of these modes indicates the presence of rather strong alpha-particle population in the plasma with a 'bump-on-tail' shaped velocity distribution. Linear stability analysis and Fokker-Planck calculations support the observations. Experimental evidence of the AEs excitation by fusion-born alpha-particles in the D-3He plasma is provided by neutron and gamma-ray diagnostics as well as fast-ion loss measurements. We discuss an experimental proposal for the planned full-scale D-T plasma experiments on JET based on the physics insights gained from these experiments.

Excitation of Alfvén eigenmodes by fusion-born alpha-particles in D-3He plasmas on JET

Belli F.;
2022-01-01

Abstract

Alfvén eigenmode (AE) instabilities driven by alpha-particles have been observed in D-3He fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-3He fusion reaction, the three-ion radio frequency scenario was used to accelerate the neutral beam injection 100 keV deuterons to higher energies in the core of mixed D-3He plasmas at high concentrations of 3He. A large variety of fast-ion driven magnetohydrodynamic modes were observed, including the elliptical Alfvén eigenmodes (EAEs) with mode numbers n = -1 and axisymmetric modes with n = 0 in the frequency range of EAEs. The simultaneous observation of these modes indicates the presence of rather strong alpha-particle population in the plasma with a 'bump-on-tail' shaped velocity distribution. Linear stability analysis and Fokker-Planck calculations support the observations. Experimental evidence of the AEs excitation by fusion-born alpha-particles in the D-3He plasma is provided by neutron and gamma-ray diagnostics as well as fast-ion loss measurements. We discuss an experimental proposal for the planned full-scale D-T plasma experiments on JET based on the physics insights gained from these experiments.
2022
fast-ion diagnostics
fusion-born alpha-particles
MHD instabilities
tokamak
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/68069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact