Gamma emitting radionuclides naturally present in the Earth’s crust and the radon exhaled by soil in the atmosphere with its short-lived progeny are two of the main contributors to the environmental gamma dose rate that typically characterizes an outdoor measurement site. The present work aims to investigate variations in the environmental dose-rate time series originated by different natural phenomena, such as weather and seismic events, which can modify the radon concentration in the air. The data analyzed here were acquired over a five-year period using a Reuter– Stokes high-pressure ionization chamber placed in the ENEA Casaccia Research Center (Rome, Italy), from November 2013 to December 2018. The detector was set to take a single measurement of the equivalent ambient dose H∗ (10) every 15 min, thereby collecting more than 184,000 values over the five-year period under consideration. The detector’s sensitivity to the short-lived radon progeny was verified in a preparatory study performed by means of simultaneous radon flux measurement on field. Variations induced by meteorological events as well as variations potentially induced by seismic events were investigated by implementing different data analysis techniques. In the latter case, a retrospective preliminary study was conducted, applying the ARFIMA class of models in order to test the method’s potential. The analysis techniques, results and potential applications are presented and discussed in this article.

Environmental Gamma Dose Rate Monitoring and Radon Correlations: Evidence and Potential Applications

Rizzo A.;Antonacci G.;Borra E.;Cardellini F.;Ciciani L.;Sperandio L.;Vilardi I.
2022-01-01

Abstract

Gamma emitting radionuclides naturally present in the Earth’s crust and the radon exhaled by soil in the atmosphere with its short-lived progeny are two of the main contributors to the environmental gamma dose rate that typically characterizes an outdoor measurement site. The present work aims to investigate variations in the environmental dose-rate time series originated by different natural phenomena, such as weather and seismic events, which can modify the radon concentration in the air. The data analyzed here were acquired over a five-year period using a Reuter– Stokes high-pressure ionization chamber placed in the ENEA Casaccia Research Center (Rome, Italy), from November 2013 to December 2018. The detector was set to take a single measurement of the equivalent ambient dose H∗ (10) every 15 min, thereby collecting more than 184,000 values over the five-year period under consideration. The detector’s sensitivity to the short-lived radon progeny was verified in a preparatory study performed by means of simultaneous radon flux measurement on field. Variations induced by meteorological events as well as variations potentially induced by seismic events were investigated by implementing different data analysis techniques. In the latter case, a retrospective preliminary study was conducted, applying the ARFIMA class of models in order to test the method’s potential. The analysis techniques, results and potential applications are presented and discussed in this article.
2022
ARFIMA models
dose rate monitoring
environmental physics
radon
Reuter–Stokes ionization chamber
seismic events
weather events
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/68927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact