Objective. The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities. Approach. Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBE surv ), or on dicentric aberrations in peripheral blood lymphocytes (RBE ab ), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I. Main results. While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences between RBE surv and RBE ab (which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations. Significance. This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.

First application of the BIANCA biophysical model to carbon-ion patient cases

Embriaco A.;
2022-01-01

Abstract

Objective. The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities. Approach. Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBE surv ), or on dicentric aberrations in peripheral blood lymphocytes (RBE ab ), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I. Main results. While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences between RBE surv and RBE ab (which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations. Significance. This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.
2022
BIANCA
carbon ion
heavy ion
particle therapy
RBE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/68967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact