An environmentally-friendly temperature sensor has been fabricated by using a low-cost water-processable nanocomposite material based on gelatin and graphene. The temperature dependence of the electrochemical properties has been investigated by using cyclic voltammetry, chronopotentiometry and impedance spectroscopy measurements. The simple symmetric device, composed of a sandwich structure between two metal foils and a printable graphene–gelatin blend, exhibits a dependence on the open-circuit voltage in a range between 260 and 310 K. Additionally, at subzero temperature, the device is able to detect the ice/frost formation. The thermally-induced phenomena occur at the electrode/gel interface with a bias current of a few tens of µA. The occurrence of dissociation reactions within the sensor causes limiting-current phenomena in the gelatin electrolyte. A detailed model describing the charge carrier accumulation, the faradaic charge transfer and diffusion processes within the device under the current-controlled has been proposed. In order to increase the cycle stability of the temperature sensor and reduce its voltage drift and offset of the output electrical signal, a driving circuit has been designed. The eco-friendly sensor shows a temperature sensitivity of about −19 mV/K, long-term stability, fast response and low-power consumption in the range of microwatts suitable for environmental monitoring for indoor applications.

Low-Power and Eco-Friendly Temperature Sensor Based on Gelatin Nanocomposite

Landi G.;
2022-01-01

Abstract

An environmentally-friendly temperature sensor has been fabricated by using a low-cost water-processable nanocomposite material based on gelatin and graphene. The temperature dependence of the electrochemical properties has been investigated by using cyclic voltammetry, chronopotentiometry and impedance spectroscopy measurements. The simple symmetric device, composed of a sandwich structure between two metal foils and a printable graphene–gelatin blend, exhibits a dependence on the open-circuit voltage in a range between 260 and 310 K. Additionally, at subzero temperature, the device is able to detect the ice/frost formation. The thermally-induced phenomena occur at the electrode/gel interface with a bias current of a few tens of µA. The occurrence of dissociation reactions within the sensor causes limiting-current phenomena in the gelatin electrolyte. A detailed model describing the charge carrier accumulation, the faradaic charge transfer and diffusion processes within the device under the current-controlled has been proposed. In order to increase the cycle stability of the temperature sensor and reduce its voltage drift and offset of the output electrical signal, a driving circuit has been designed. The eco-friendly sensor shows a temperature sensitivity of about −19 mV/K, long-term stability, fast response and low-power consumption in the range of microwatts suitable for environmental monitoring for indoor applications.
2022
current limiting phenomena
energy efficiency
environmental monitoring
faradaic process
gel polymer electrolyte
gelatin
graphene
self-powered
sustainability
temperature sensor
water processable
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/69147
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact