Recent observations in HL-2A tokamak give new experimental evidences of energetic particle mode (EPM) avalanche. In a strong EPM burst, the mode structure propagates radially outward within two hundred Alfvén time, while the frequency of the dominant mode changes self-consistently to maximize wave-particle power exchange and mode growth. This suggests that significant energetic particle transport occurs in this avalanche phase, in agreement with theoretical framework of EPM convective amplification. A simplified relay runner model yields satisfactory interpretations of the measurements. The results can help understanding the nonlinear dynamics of energetic particle driven modes in future burning plasmas, such as ITER. ©
Experimental evidence of nonlinear avalanche dynamics of energetic particle modes
Zonca F.;
2022-01-01
Abstract
Recent observations in HL-2A tokamak give new experimental evidences of energetic particle mode (EPM) avalanche. In a strong EPM burst, the mode structure propagates radially outward within two hundred Alfvén time, while the frequency of the dominant mode changes self-consistently to maximize wave-particle power exchange and mode growth. This suggests that significant energetic particle transport occurs in this avalanche phase, in agreement with theoretical framework of EPM convective amplification. A simplified relay runner model yields satisfactory interpretations of the measurements. The results can help understanding the nonlinear dynamics of energetic particle driven modes in future burning plasmas, such as ITER. ©File | Dimensione | Formato | |
---|---|---|---|
experimental evidence.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.