The Divertor Tokamak Test (DTT) facility, a fully superconducting nuclear fusion reactor being built in Italy, will contribute to address the power exhaust problem in EU DEMO perspective. A lot of flexibility of operation will be demanded to the machine, which should be capable to tackle also severe transients such as plasma disruptions. In this work, the 4C thermal-hydraulic code is used to compute the temperature margin during a plasma disruption, using as input the heat generated into the Toroidal Field coil casing and transferred to the winding pack, and the possibility that this leads to a quench of the magnet is studied. The results of the analysis will give important feedbacks for the design of the quench protection system, e.g., avoiding to trigger a fast current discharge right after the disruption, as well as for the machine operation, e.g., assessing the required re-cooling time of the magnets after a disruption.
Analysis of the Thermal-Hydraulic Effects of a Plasma Disruption on the DTT TF Magnets
Di Zenobio, A.;Muzzi, L.;
2022-01-01
Abstract
The Divertor Tokamak Test (DTT) facility, a fully superconducting nuclear fusion reactor being built in Italy, will contribute to address the power exhaust problem in EU DEMO perspective. A lot of flexibility of operation will be demanded to the machine, which should be capable to tackle also severe transients such as plasma disruptions. In this work, the 4C thermal-hydraulic code is used to compute the temperature margin during a plasma disruption, using as input the heat generated into the Toroidal Field coil casing and transferred to the winding pack, and the possibility that this leads to a quench of the magnet is studied. The results of the analysis will give important feedbacks for the design of the quench protection system, e.g., avoiding to trigger a fast current discharge right after the disruption, as well as for the machine operation, e.g., assessing the required re-cooling time of the magnets after a disruption.File | Dimensione | Formato | |
---|---|---|---|
Analysis of the termo-idraulic effects.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.