The Divertor Tokamak Test (DTT) facility, a fully superconducting nuclear fusion reactor being built in Italy, will contribute to address the power exhaust problem in EU DEMO perspective. A lot of flexibility of operation will be demanded to the machine, which should be capable to tackle also severe transients such as plasma disruptions. In this work, the 4C thermal-hydraulic code is used to compute the temperature margin during a plasma disruption, using as input the heat generated into the Toroidal Field coil casing and transferred to the winding pack, and the possibility that this leads to a quench of the magnet is studied. The results of the analysis will give important feedbacks for the design of the quench protection system, e.g., avoiding to trigger a fast current discharge right after the disruption, as well as for the machine operation, e.g., assessing the required re-cooling time of the magnets after a disruption.

Analysis of the Thermal-Hydraulic Effects of a Plasma Disruption on the DTT TF Magnets

Di Zenobio, A.;Muzzi, L.;
2022-01-01

Abstract

The Divertor Tokamak Test (DTT) facility, a fully superconducting nuclear fusion reactor being built in Italy, will contribute to address the power exhaust problem in EU DEMO perspective. A lot of flexibility of operation will be demanded to the machine, which should be capable to tackle also severe transients such as plasma disruptions. In this work, the 4C thermal-hydraulic code is used to compute the temperature margin during a plasma disruption, using as input the heat generated into the Toroidal Field coil casing and transferred to the winding pack, and the possibility that this leads to a quench of the magnet is studied. The results of the analysis will give important feedbacks for the design of the quench protection system, e.g., avoiding to trigger a fast current discharge right after the disruption, as well as for the machine operation, e.g., assessing the required re-cooling time of the magnets after a disruption.
2022
DTT
nuclear fusion
plasma disruptions
superconducting magnets
thermal-hydraulic modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/70108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact