We examine North Atlantic climate variability using an ensemble of ocean reanalysis datasets to study the Atlantic Meridional Overturning Circulation (AMOC) from 1979 to 2018. The dataset intercomparison shows good agreement for the latest period (1995–2018) for AMOC dynamics, characterized by a weaker overturning circulation after 1995 and a more intense one during 1979–1995, with varying intensity across the various datasets. The correlation between leading empirical orthogonal functions suggests that the AMOC weakening has connections with cooler (warmer) sea surface temperature (SST) and lower (higher) ocean heat content in the subpolar (subtropical) gyre in the North Atlantic. Barotropic stream function and Gulf Stream index reveal a shrinking subpolar gyre and an expanding subtropical gyre during the strong-AMOC period and vice versa, consistently with Labrador Sea deep convection reduction. We also observed an east–west salt redistribution between the two periods. Additional analyses show that the AMOC variability is related to the North Atlantic Oscillation phase change around 1995. One of the datasets included in the comparison shows an overestimation of AMOC variability, notwithstanding the model SST bias reduction via ERA-Interim flux adjustments: further studies with a set of numerical experiments will help explain this behavior.

Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses

Artale V.;
2022-01-01

Abstract

We examine North Atlantic climate variability using an ensemble of ocean reanalysis datasets to study the Atlantic Meridional Overturning Circulation (AMOC) from 1979 to 2018. The dataset intercomparison shows good agreement for the latest period (1995–2018) for AMOC dynamics, characterized by a weaker overturning circulation after 1995 and a more intense one during 1979–1995, with varying intensity across the various datasets. The correlation between leading empirical orthogonal functions suggests that the AMOC weakening has connections with cooler (warmer) sea surface temperature (SST) and lower (higher) ocean heat content in the subpolar (subtropical) gyre in the North Atlantic. Barotropic stream function and Gulf Stream index reveal a shrinking subpolar gyre and an expanding subtropical gyre during the strong-AMOC period and vice versa, consistently with Labrador Sea deep convection reduction. We also observed an east–west salt redistribution between the two periods. Additional analyses show that the AMOC variability is related to the North Atlantic Oscillation phase change around 1995. One of the datasets included in the comparison shows an overestimation of AMOC variability, notwithstanding the model SST bias reduction via ERA-Interim flux adjustments: further studies with a set of numerical experiments will help explain this behavior.
2022
Atlantic Meridional Overturning Circulation
deep water formation
Gulf Stream
Labrador Sea
North Atlantic
ocean heat content
ocean reanalyses
sea surface temperature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/70387
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact