Olive oil is one excellence of the Italian food industry: around 300 kt yr−1 are produced, creating roughly the same amount of olive mill wastewater (OMW) to be disposed of. The present work describes a process to exploit OMW by converting its organic compounds to valuable gaseous biofuel. A sample OMW was characterized (COD, TOC, solids, and polyphenols) and submitted to membrane filtration tests to concentrate the organic compounds. Based on the results of the experiments, a treatment process was outlined: the retentate streams from microfiltration and ultrafiltration steps were fed to a cracking and a steam reforming reactor, respectively; the obtained syngas streams were then mixed and sent to a methanation reactor. The process was simulated with Aspen Plus (AspenTech©) software, assessing operating conditions and streams compositions: the final biofuel is around 81 mol.% methane, 4 mol.% hydrogen, and 11 mol.% carbon dioxide. The permeate stream cannot be directly disposed of, but both its amount and its polluting charge are greatly reduced. The heat needed by the process, mainly due to the endothermic reactions, can be obtained by burning an amount of olive pomaces, roughly corresponding to one-third of the amount left by olive treatments giving rise to the processed OMW feed.

Exploiting Olive Mill Wastewater via Thermal Conversion of the Organic Matter into Gaseous Biofuel—A Case Study

Pozio A.;Santucci A.;Farina L.
2022-01-01

Abstract

Olive oil is one excellence of the Italian food industry: around 300 kt yr−1 are produced, creating roughly the same amount of olive mill wastewater (OMW) to be disposed of. The present work describes a process to exploit OMW by converting its organic compounds to valuable gaseous biofuel. A sample OMW was characterized (COD, TOC, solids, and polyphenols) and submitted to membrane filtration tests to concentrate the organic compounds. Based on the results of the experiments, a treatment process was outlined: the retentate streams from microfiltration and ultrafiltration steps were fed to a cracking and a steam reforming reactor, respectively; the obtained syngas streams were then mixed and sent to a methanation reactor. The process was simulated with Aspen Plus (AspenTech©) software, assessing operating conditions and streams compositions: the final biofuel is around 81 mol.% methane, 4 mol.% hydrogen, and 11 mol.% carbon dioxide. The permeate stream cannot be directly disposed of, but both its amount and its polluting charge are greatly reduced. The heat needed by the process, mainly due to the endothermic reactions, can be obtained by burning an amount of olive pomaces, roughly corresponding to one-third of the amount left by olive treatments giving rise to the processed OMW feed.
2022
biofuel
cracking
membrane filtration
methanation
olive mill wastewater
steam reforming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/70427
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact