In this paper, we develop a simple technique to identify material texture from far, by using polarization-resolved imaging. Such a technique can be easily implemented into industrial environments, where fast and cheap sensors are required. The technique has been applied to both isotropic references (Teflon bar) and anisotropic samples (wood). By studying the radiance of the samples illuminated by linearly polarized light, different and specific behaviours are identified for both isotropic and anisotropic samples, in terms of multipolar emission and linear dichroism, from which fibre orientation can be resolved.

Recognition of Bio-Structural Anisotropy by Polarization Resolved Imaging

Alonzo M.;
2022-01-01

Abstract

In this paper, we develop a simple technique to identify material texture from far, by using polarization-resolved imaging. Such a technique can be easily implemented into industrial environments, where fast and cheap sensors are required. The technique has been applied to both isotropic references (Teflon bar) and anisotropic samples (wood). By studying the radiance of the samples illuminated by linearly polarized light, different and specific behaviours are identified for both isotropic and anisotropic samples, in terms of multipolar emission and linear dichroism, from which fibre orientation can be resolved.
2022
Augmented reality
Industrial sensing
Light polarization
Polarimetry
Polarized imaging
File in questo prodotto:
File Dimensione Formato  
Recognition of Bio-Structural Anisotropy by Polarization Resolved Imaging.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/72247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact