Epidemiological studies suggest an increased incidence and risk of cataract after low-dose (<2 Gy) ionizing radiation exposures. However, the biological mechanism(s) of this process are not fully understood. DNA damage and repair are thought to have a contributing role in radiation-induced cataractogenesis. Recently we have reported an inverse dose-rate effect, as well as the low-dose response, of DNA damage and repair in lens epithelial cells (LECs). Here, we present further initial findings from two mutated strains (Ercc2+/- and Ptch1+/-) of mice, both reportedly susceptible to radiation-induced cataract, and their DNA damage and repair response to low-dose and low-dose-rate gamma rays. Our results support the hypothesis that the lens epithelium responds differently to radiation than other tissues, with reported radiation susceptibility to DNA damage not necessarily translating to the LECs. Genetic predisposition and strain(s) of mice have a significant role in radiation-induced cataract susceptibility.
Radiation-induced DNA Damage and Repair in Lens Epithelial Cells of both Ptch1(+/-) and Ercc2(+/-) Mutated Mice
Mancuso, M;De Stefano, I;Pazzaglia, S;
2022-01-01
Abstract
Epidemiological studies suggest an increased incidence and risk of cataract after low-dose (<2 Gy) ionizing radiation exposures. However, the biological mechanism(s) of this process are not fully understood. DNA damage and repair are thought to have a contributing role in radiation-induced cataractogenesis. Recently we have reported an inverse dose-rate effect, as well as the low-dose response, of DNA damage and repair in lens epithelial cells (LECs). Here, we present further initial findings from two mutated strains (Ercc2+/- and Ptch1+/-) of mice, both reportedly susceptible to radiation-induced cataract, and their DNA damage and repair response to low-dose and low-dose-rate gamma rays. Our results support the hypothesis that the lens epithelium responds differently to radiation than other tissues, with reported radiation susceptibility to DNA damage not necessarily translating to the LECs. Genetic predisposition and strain(s) of mice have a significant role in radiation-induced cataract susceptibility.File | Dimensione | Formato | |
---|---|---|---|
rare-196-03-02 36..42.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
608.2 kB
Formato
Adobe PDF
|
608.2 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.