Energy efficiency and greenhouse gas reduction have become two of the most important issues to address in fighting climate change. Focused strategies have been implemented aiming at reducing the energy consumption of buildings since it is one of the most energy-intensive sectors, but they are mainly concerned with energy reduction without considering their environmental impact. The present work therefore aims at assessing the energy and environmental impacts of the use of insulation materials for building envelope refurbishment as the thermal coating. Reference buildings were used to perform energy simulations in representative cities of Italy and energy and environmental impacts of the most common and sustainable insulation materials were thus evaluated. Relevant outcomes have been focused on defining a new Economic and Environmental Sustainability Index (EESI) capable of considering both economic and environmental aspects; particularly, sustainable materials (such as cellulose fiber) can have the same affordability as traditional ones (such as polystyrene foam slab, glass wool, or stone wool) if environmental impact is also taken into account, despite their higher cost. However, according to EESI, the affordability of traditional insulation materials remains evident in the warmest climatic zones because of the lower energy needs of buildings.

Integration of Energy Simulations and Life Cycle Assessment in Building Refurbishment: An Affordability Comparison of Thermal Insulation Materials through a New Sustainability Index

Scrucca, Flavio;Palladino, Domenico
2023-01-01

Abstract

Energy efficiency and greenhouse gas reduction have become two of the most important issues to address in fighting climate change. Focused strategies have been implemented aiming at reducing the energy consumption of buildings since it is one of the most energy-intensive sectors, but they are mainly concerned with energy reduction without considering their environmental impact. The present work therefore aims at assessing the energy and environmental impacts of the use of insulation materials for building envelope refurbishment as the thermal coating. Reference buildings were used to perform energy simulations in representative cities of Italy and energy and environmental impacts of the most common and sustainable insulation materials were thus evaluated. Relevant outcomes have been focused on defining a new Economic and Environmental Sustainability Index (EESI) capable of considering both economic and environmental aspects; particularly, sustainable materials (such as cellulose fiber) can have the same affordability as traditional ones (such as polystyrene foam slab, glass wool, or stone wool) if environmental impact is also taken into account, despite their higher cost. However, according to EESI, the affordability of traditional insulation materials remains evident in the warmest climatic zones because of the lower energy needs of buildings.
2023
energy and environmental impact, insulation materials, sustainable materials, energy simulations, economic payback time, carbon payback time, reference buildings, life cycle assessment, Economic and Environmental Sustainability Index
File in questo prodotto:
File Dimensione Formato  
sustainability-15-01412-v2-3.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/73711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact