Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment’s response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.

Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy

Diretto G.;Frusciante S.;
2023-01-01

Abstract

Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment’s response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.
2023
Bacteriophages
High-throughput sequencing
Microbiome
Omic sciences
Poultry
Salmonella
File in questo prodotto:
File Dimensione Formato  
Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/74350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact