Technologies based on High Temperature Superconductors (HTS) are evolving rapidly toward maturity. Within the magnetic confinement fusion environment, several projects are demonstrating the possibility to integrate HTS in the coil systems. With respect to Low Temperature Superconducting (LTS) technologies, HTS could allow extending the operating space of fusion coils, either at higher temperatures, or at higher magnetic field levels, and in any case with larger operating margins. Different perspectives and development strategies are proposed, depending on whether HTS is considered a technology to completely substitute LTS, or to integrate and extend its performance range. A fundamental common requirement is the assessment of the layout, the feasibility, and performance demonstration of high-current conductors. Starting from the results achieved with the Al-slotted core cable-in-conduit conductor, and with a view on existing concepts for standard copper and aluminum cables, we have designed a new HTS sector-cable concept, to allow a flexible conductor design and a robust industrial processing. Several trials have been carried out, to verify the manufacturing approach, using either Al- or Cu-based stabilizers. Prototype sub-cables have been characterized at 77 K and self-field, as a necessary step toward the final target of a CICC operating stably with 60 kA at 4.2 K and 18 T, that is presently of interest for the EU-DEMO Central Solenoid Coil.

Design and Feasibility Assessment of an HTS Sector Shaped High-Current Conductor for Fusion Coils

Muzzi, L.;Augieri, A.;Celentano, G.;Chiarelli, S.;della Corte, A.;De Marzi, G.;Di Zenobio, A.;Marchetti, M.;Messina, G.;Rufoloni, A.;Vannozzi, A.;
2023-01-01

Abstract

Technologies based on High Temperature Superconductors (HTS) are evolving rapidly toward maturity. Within the magnetic confinement fusion environment, several projects are demonstrating the possibility to integrate HTS in the coil systems. With respect to Low Temperature Superconducting (LTS) technologies, HTS could allow extending the operating space of fusion coils, either at higher temperatures, or at higher magnetic field levels, and in any case with larger operating margins. Different perspectives and development strategies are proposed, depending on whether HTS is considered a technology to completely substitute LTS, or to integrate and extend its performance range. A fundamental common requirement is the assessment of the layout, the feasibility, and performance demonstration of high-current conductors. Starting from the results achieved with the Al-slotted core cable-in-conduit conductor, and with a view on existing concepts for standard copper and aluminum cables, we have designed a new HTS sector-cable concept, to allow a flexible conductor design and a robust industrial processing. Several trials have been carried out, to verify the manufacturing approach, using either Al- or Cu-based stabilizers. Prototype sub-cables have been characterized at 77 K and self-field, as a necessary step toward the final target of a CICC operating stably with 60 kA at 4.2 K and 18 T, that is presently of interest for the EU-DEMO Central Solenoid Coil.
2023
Cable-in-conduit-conductor (CICC)
Fusion magnets
High temperature superconductor (HTS) coated conductors
Twisted staked tape cable
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/74635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact