Anion-exchange membranes (AEMs) are involved in a wide range of applications, including fuel cells and water electrolysis. A straightforward method for the preparation of efficient AEMs consists of polymer functionalization with robust anion-exchange sites. In this work, an aliphatic polyketone was functionalized with 1-(3-aminopropyl)imidazole through the Paal–Knorr reaction, with a carbonyl (CCO %) conversion of 33%. The anion-exchange groups were generated by the imidazole quaternization by using two different types of alkyl halides, i.e., 1,4-iodobutane and 1-iodobutane, with the aim of modulating the degree of crosslinking of the derived membrane. All of the membranes were amorphous (Tg ∼ 30 °C), thermally resistant up to 130 °C, and had a minimum Young’s modulus of 372 ± 30 MPa and a maximum of 86 ± 5 % for the elongation at break for the least-crosslinked system. The ionic conductivity of the AEMs was determined at 25 °C by electrochemical impedance spectroscopy (EIS), with a maximum of 9.69 mS/cm, i.e., comparable with that of 9.66 mS/cm measured using a commercially available AEM (Fumasep-PK-130). Future efforts will be directed toward increasing the robustness of these PK-based AEMs to meet all the requirements needed for their application in electrolytic cells.
Polyketone-Based Anion-Exchange Membranes for Alkaline Water Electrolysis
Pozio A.;
2023-01-01
Abstract
Anion-exchange membranes (AEMs) are involved in a wide range of applications, including fuel cells and water electrolysis. A straightforward method for the preparation of efficient AEMs consists of polymer functionalization with robust anion-exchange sites. In this work, an aliphatic polyketone was functionalized with 1-(3-aminopropyl)imidazole through the Paal–Knorr reaction, with a carbonyl (CCO %) conversion of 33%. The anion-exchange groups were generated by the imidazole quaternization by using two different types of alkyl halides, i.e., 1,4-iodobutane and 1-iodobutane, with the aim of modulating the degree of crosslinking of the derived membrane. All of the membranes were amorphous (Tg ∼ 30 °C), thermally resistant up to 130 °C, and had a minimum Young’s modulus of 372 ± 30 MPa and a maximum of 86 ± 5 % for the elongation at break for the least-crosslinked system. The ionic conductivity of the AEMs was determined at 25 °C by electrochemical impedance spectroscopy (EIS), with a maximum of 9.69 mS/cm, i.e., comparable with that of 9.66 mS/cm measured using a commercially available AEM (Fumasep-PK-130). Future efforts will be directed toward increasing the robustness of these PK-based AEMs to meet all the requirements needed for their application in electrolytic cells.File | Dimensione | Formato | |
---|---|---|---|
Polyketone-Based Anion-Exchange Membranes for Alkaline Water Electrolysis.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.