The JET neutron camera is a well-established detector system at JET, which has 19 sightlines each equipped with a liquid scintillator. The system measures a 2D profile of the neutron emission from the plasma. A first principle physics method is used to estimate the DD neutron yield that is based on JET neutron camera measurements and is independent of other neutron measurements. This paper details the data reduction techniques, models of the neutron camera, simulations of neutron transport, and detector responses used to this end. The estimate uses a simple parameterized model of the neutron emission profile. The method makes use of the JET neutron camera’s upgraded data acquisition system. It also accounts for neutron scattering near the detectors and transmission through the collimator. These components together contribute to 9% of the detected neutron rate above a 0.5 MeVee energy threshold. Despite the simplicity of the neutron emission profile model, the DD neutron yield estimate falls on average within 10% agreement with a corresponding estimate from the JET fission chambers. The method can be improved by considering more advanced neutron emission profiles. It can also be expanded to estimate the DT neutron yield with the same methodology.

Estimating the neutron yield in a deuterium plasma with the JET neutron camera

Marocco D.;Riva M.;
2023-01-01

Abstract

The JET neutron camera is a well-established detector system at JET, which has 19 sightlines each equipped with a liquid scintillator. The system measures a 2D profile of the neutron emission from the plasma. A first principle physics method is used to estimate the DD neutron yield that is based on JET neutron camera measurements and is independent of other neutron measurements. This paper details the data reduction techniques, models of the neutron camera, simulations of neutron transport, and detector responses used to this end. The estimate uses a simple parameterized model of the neutron emission profile. The method makes use of the JET neutron camera’s upgraded data acquisition system. It also accounts for neutron scattering near the detectors and transmission through the collimator. These components together contribute to 9% of the detected neutron rate above a 0.5 MeVee energy threshold. Despite the simplicity of the neutron emission profile model, the DD neutron yield estimate falls on average within 10% agreement with a corresponding estimate from the JET fission chambers. The method can be improved by considering more advanced neutron emission profiles. It can also be expanded to estimate the DT neutron yield with the same methodology.
File in questo prodotto:
File Dimensione Formato  
073502_1_5.0144654.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 10.49 MB
Formato Adobe PDF
10.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/74749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact