The fabrication of high-efficiency GaAsP-based solar cells on GaAs wafers requires addressing structural issues arising from the materials lattice mismatch. We report on tensile strain relaxation and composition control of MOVPE-grown As-rich GaAs1−xPx/(100)GaAs heterostructures studied by double-crystal X-ray diffraction and field emission scanning electron microscopy. Thin (80–150 nm) GaAs1−xPx epilayers appear partially relaxed (within 1−12% of the initial misfit) through a network of misfit dislocations along the sample (Formula presented.) and (Formula presented.) in plane directions. Values of the residual lattice strain as a function of epilayer thickness were compared with predictions from the equilibrium (Matthews–Blakeslee) and energy balance models. It is shown that the epilayers relax at a slower rate than expected based on the equilibrium model, an effect ascribed to the existence of an energy barrier to the nucleation of new dislocations. The study of GaAs1−xPx composition as a function of the V-group precursors ratio in the vapor during growth allowed for the determination of the As/P anion segregation coefficient. The latter agrees with values reported in the literature for P-rich alloys grown using the same precursor combination. P-incorporation into nearly pseudomorphic heterostructures turns out to be kinetically activated, with an activation energy EA = 1.41 ± 0.04 eV over the entire alloy compositional range.
Lattice Strain Relaxation and Compositional Control in As-Rich GaAsP/(100)GaAs Heterostructures Grown by MOVPE
Burresi E.;Tapfer L.;
2023-01-01
Abstract
The fabrication of high-efficiency GaAsP-based solar cells on GaAs wafers requires addressing structural issues arising from the materials lattice mismatch. We report on tensile strain relaxation and composition control of MOVPE-grown As-rich GaAs1−xPx/(100)GaAs heterostructures studied by double-crystal X-ray diffraction and field emission scanning electron microscopy. Thin (80–150 nm) GaAs1−xPx epilayers appear partially relaxed (within 1−12% of the initial misfit) through a network of misfit dislocations along the sample (Formula presented.) and (Formula presented.) in plane directions. Values of the residual lattice strain as a function of epilayer thickness were compared with predictions from the equilibrium (Matthews–Blakeslee) and energy balance models. It is shown that the epilayers relax at a slower rate than expected based on the equilibrium model, an effect ascribed to the existence of an energy barrier to the nucleation of new dislocations. The study of GaAs1−xPx composition as a function of the V-group precursors ratio in the vapor during growth allowed for the determination of the As/P anion segregation coefficient. The latter agrees with values reported in the literature for P-rich alloys grown using the same precursor combination. P-incorporation into nearly pseudomorphic heterostructures turns out to be kinetically activated, with an activation energy EA = 1.41 ± 0.04 eV over the entire alloy compositional range.File | Dimensione | Formato | |
---|---|---|---|
Lattice Strain Relaxation and Compositional Control in As-Rich GaAsP_(100)GaAs Heterostructures Grown by MOVPE.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.65 MB
Formato
Adobe PDF
|
2.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.