We devise an analytical method to deal with a class of nonlinear Schrödinger lattices with random potential and subquadratic power nonlinearity. An iteration algorithm is proposed based on the multinomial theorem, using Diophantine equations and a mapping procedure onto a Cayley graph. Based on this algorithm, we are able to obtain several hard results pertaining to asymptotic spreading of the nonlinear field beyond a perturbation theory approach. In particular, we show that the spreading process is subdiffusive and has complex microscopic organization involving both long-time trapping phenomena on finite clusters and long-distance jumps along the lattice consistent with Lévy flights. The origin of the flights is associated with the occurrence of degenerate states in the system; the latter are found to be a characteristic of the subquadratic model. The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border, above which the field can spread to long distances on a stochastic process and below which it is Anderson localized similarly to a linear field.

Dynamical chaos in nonlinear Schrödinger models with subquadratic power nonlinearity

Milovanov A.;
2023-01-01

Abstract

We devise an analytical method to deal with a class of nonlinear Schrödinger lattices with random potential and subquadratic power nonlinearity. An iteration algorithm is proposed based on the multinomial theorem, using Diophantine equations and a mapping procedure onto a Cayley graph. Based on this algorithm, we are able to obtain several hard results pertaining to asymptotic spreading of the nonlinear field beyond a perturbation theory approach. In particular, we show that the spreading process is subdiffusive and has complex microscopic organization involving both long-time trapping phenomena on finite clusters and long-distance jumps along the lattice consistent with Lévy flights. The origin of the flights is associated with the occurrence of degenerate states in the system; the latter are found to be a characteristic of the subquadratic model. The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border, above which the field can spread to long distances on a stochastic process and below which it is Anderson localized similarly to a linear field.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/75228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact