Benzyl alcohol (BnOH) oxidation to benzaldehyde (PhCHO) is a pivotal industrial reaction. The aerobic oxidation of BnOH in solvent-free conditions is highly compatible with the necessity of low environmental impact. In this research work, palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR), was synthesized, and utilized for aerobic solvent-free oxidation of BnOH derivatives to the corresponding aldehydes. The catalyst, PdOx/CeO2-NR, was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), N2 adsorption-desorption analysis, temperature-programmed reduction with hydrogen (H2-TPR), and X-ray Photoelectron Spectroscopy (XPS), proving that the PdOx (x > 1) particles were highly dispersed on CeO2-NR and have a strong interaction with the support. The PdOx/CeO2-NR catalyst permitted the aerobic oxidation of various benzyl alcohol derivatives with good conversion, and high selectivity towards the corresponding aldehydes. The presence of electron donating groups (EDG) on the benzylic ring enhanced the reactivity as opposed to the electron withdrawing groups (EWG) which were detrimental for the catalytic activity. During the reaction a partial reduction of the metal produced a Pd(0)/PdOx/CeO2-NR redox couple stable in the reaction condition, more reactive and recyclable. Some mechanistic hypotheses are presented.

Solvent-Free Oxidation of Benzyl Alcohol Derivatives by In Situ Generated Redox Couple Pd(0)/PdOx Supported on Ceria Nanorods

Luisetto I.;
2023-01-01

Abstract

Benzyl alcohol (BnOH) oxidation to benzaldehyde (PhCHO) is a pivotal industrial reaction. The aerobic oxidation of BnOH in solvent-free conditions is highly compatible with the necessity of low environmental impact. In this research work, palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR), was synthesized, and utilized for aerobic solvent-free oxidation of BnOH derivatives to the corresponding aldehydes. The catalyst, PdOx/CeO2-NR, was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), N2 adsorption-desorption analysis, temperature-programmed reduction with hydrogen (H2-TPR), and X-ray Photoelectron Spectroscopy (XPS), proving that the PdOx (x > 1) particles were highly dispersed on CeO2-NR and have a strong interaction with the support. The PdOx/CeO2-NR catalyst permitted the aerobic oxidation of various benzyl alcohol derivatives with good conversion, and high selectivity towards the corresponding aldehydes. The presence of electron donating groups (EDG) on the benzylic ring enhanced the reactivity as opposed to the electron withdrawing groups (EWG) which were detrimental for the catalytic activity. During the reaction a partial reduction of the metal produced a Pd(0)/PdOx/CeO2-NR redox couple stable in the reaction condition, more reactive and recyclable. Some mechanistic hypotheses are presented.
2023
aerobic oxidation
benzyl alcohol
palladium nanoparticles
solvent-free reactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/76027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact