Particulate matter (PM) in air has been proven to be hazardous to human health. Here we focused on analysis of PM data we obtained from the same campaign which was presented in our previous study. Multivariate linear and random forest models were used for the calibration and analysis. In our linear regression model the inputs were PM, temperature and humidity measured with low-cost sensors, and the target was the reference PM measurements obtained from SEPA in the same timeframe.
LOW-PROCESSING DATA ENRICHMENT AND CALIBRATION FOR PM2.5 LOW-COST SENSORS
De Vito S.;
2023-01-01
Abstract
Particulate matter (PM) in air has been proven to be hazardous to human health. Here we focused on analysis of PM data we obtained from the same campaign which was presented in our previous study. Multivariate linear and random forest models were used for the calibration and analysis. In our linear regression model the inputs were PM, temperature and humidity measured with low-cost sensors, and the target was the reference PM measurements obtained from SEPA in the same timeframe.File | Dimensione | Formato | |
---|---|---|---|
0354-98362200221S.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.