Particulate matter (PM) in air has been proven to be hazardous to human health. Here we focused on analysis of PM data we obtained from the same campaign which was presented in our previous study. Multivariate linear and random forest models were used for the calibration and analysis. In our linear regression model the inputs were PM, temperature and humidity measured with low-cost sensors, and the target was the reference PM measurements obtained from SEPA in the same timeframe.

LOW-PROCESSING DATA ENRICHMENT AND CALIBRATION FOR PM2.5 LOW-COST SENSORS

De Vito S.;
2023-01-01

Abstract

Particulate matter (PM) in air has been proven to be hazardous to human health. Here we focused on analysis of PM data we obtained from the same campaign which was presented in our previous study. Multivariate linear and random forest models were used for the calibration and analysis. In our linear regression model the inputs were PM, temperature and humidity measured with low-cost sensors, and the target was the reference PM measurements obtained from SEPA in the same timeframe.
2023
Calibration
Data enrichment
Low-cost sensors
Low-processing
PM 2.5
File in questo prodotto:
File Dimensione Formato  
0354-98362200221S.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/76268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact