Accretion disks around very compact objects such as very massive black holes can grow according to thick toroidal models. We face the problem of defining how the thickness of a toroidal accretion disk spinning around a Schwarzschild black hole changes under the influence of a toroidal magnetic field and by varying the fluid angular momentum. We consider both a hydrodynamic and a magnetohydrodynamic disk based on the Polish doughnut thick model. We show that the torus thickness remains basically unaffected but tends to increase or decrease slightly depending on the balance of the magnetic, gravitational and centrifugal effects which the disk is subjected to. © Copyright EPLA, 2013.

Squeezing of toroidal accretion disks

Montani, G.
2013

Abstract

Accretion disks around very compact objects such as very massive black holes can grow according to thick toroidal models. We face the problem of defining how the thickness of a toroidal accretion disk spinning around a Schwarzschild black hole changes under the influence of a toroidal magnetic field and by varying the fluid angular momentum. We consider both a hydrodynamic and a magnetohydrodynamic disk based on the Polish doughnut thick model. We show that the torus thickness remains basically unaffected but tends to increase or decrease slightly depending on the balance of the magnetic, gravitational and centrifugal effects which the disk is subjected to. © Copyright EPLA, 2013.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact