In this study, we have proposed the use of time-sensitive networking (TSN) technologies for the distribution of the interlock signals of the machine protection system of the future IFMIF-DONES particle accelerator, required for implementing the protection mechanisms of the different systems in the facility. Such facilities usually rely on different fieldbus technologies or direct wiring for their transmission, typically leading to complex network infrastructures and interoperability problems. We provide insights of how TSN could simplify the deployment of the interlock network by aggregating all the traffic under the same network infrastructure, whilst guaranteeing the latency and timing constraints. Since TSN is built on top of Ethernet technology, it also benefits from other network services and all its related developments, including redundancy and bandwidth improvements. The main challenge to address is the transmission of the interlock signals with very low latency between devices located in different points of the facility. We have characterized our initial TSN architecture prototype, evaluated the latency and bandwidth obtained with this solution, identified applications to effectively shape the attainable determinism, and found shortcomings and areas of future improvements.

Time-sensitive networking for interlock propagation in the IFMIF-DONES facility

Cappelli, Mauro;
2023-01-01

Abstract

In this study, we have proposed the use of time-sensitive networking (TSN) technologies for the distribution of the interlock signals of the machine protection system of the future IFMIF-DONES particle accelerator, required for implementing the protection mechanisms of the different systems in the facility. Such facilities usually rely on different fieldbus technologies or direct wiring for their transmission, typically leading to complex network infrastructures and interoperability problems. We provide insights of how TSN could simplify the deployment of the interlock network by aggregating all the traffic under the same network infrastructure, whilst guaranteeing the latency and timing constraints. Since TSN is built on top of Ethernet technology, it also benefits from other network services and all its related developments, including redundancy and bandwidth improvements. The main challenge to address is the transmission of the interlock signals with very low latency between devices located in different points of the facility. We have characterized our initial TSN architecture prototype, evaluated the latency and bandwidth obtained with this solution, identified applications to effectively shape the attainable determinism, and found shortcomings and areas of future improvements.
2023
Convergent networks
Determinism
IFMIF-DONES
Interlock
Machine protection system
Time-sensitive networking
File in questo prodotto:
File Dimensione Formato  
Time-sensitive networking for interlock propagation in the IFMIF-DONES facility.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/79747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact