Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In this study, we investigated the effectiveness of various dielectric fluids in mitigating thermal runaway during overcharge abuse tests of cylindrical LTO cells with a capacity of 10 Ah. The experimental campaign focused on overcharging fully charged cells (starting at 100% State of Charge) at a current of 40A (4C). The tests were conducted under two conditions: the first benchmark test involved a cell exposed to air, while the subsequent tests involved cells submerged in different dielectric fluids. These fluids included two perfluoropolyether fluorinated fluids (PFPEs) with boiling points of 170 °C and 270 °C, respectively, a synthetic ester, and a silicone oil. The results were analyzed to determine the fluids’ ability to delay possible thermal runaway and prevent catastrophic failures. The findings demonstrate that some dielectric fluids can delay thermal runaway, with one fluid showing superior performance with respect to the others in preventing fire during thermal runaway. The top-performing fluid was further evaluated in a simulated battery pack environment, confirming its ability to mitigate thermal runaway risks. These results provide important insights for improving the safety of battery systems in electric vehicles.

Analysis of the Thermal Runaway Mitigation Performances of Dielectric Fluids During Overcharge Abuse Tests of Lithium-Ion Cells with Lithium Titanate Oxide Anodes

Menale C.;Sglavo V.;Vellucci F.;
2024-01-01

Abstract

Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In this study, we investigated the effectiveness of various dielectric fluids in mitigating thermal runaway during overcharge abuse tests of cylindrical LTO cells with a capacity of 10 Ah. The experimental campaign focused on overcharging fully charged cells (starting at 100% State of Charge) at a current of 40A (4C). The tests were conducted under two conditions: the first benchmark test involved a cell exposed to air, while the subsequent tests involved cells submerged in different dielectric fluids. These fluids included two perfluoropolyether fluorinated fluids (PFPEs) with boiling points of 170 °C and 270 °C, respectively, a synthetic ester, and a silicone oil. The results were analyzed to determine the fluids’ ability to delay possible thermal runaway and prevent catastrophic failures. The findings demonstrate that some dielectric fluids can delay thermal runaway, with one fluid showing superior performance with respect to the others in preventing fire during thermal runaway. The top-performing fluid was further evaluated in a simulated battery pack environment, confirming its ability to mitigate thermal runaway risks. These results provide important insights for improving the safety of battery systems in electric vehicles.
2024
dielectric fluids
lithium titanate oxide (LTO) anode cells
thermal runaway
File in questo prodotto:
File Dimensione Formato  
Analysis of the Thermal Runaway Mitigation Performances of Dielectric Fluids During Overcharge Abuse Tests of Lithium-Ion Cells with Lithium Titanate Oxide Anodes.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 15.8 MB
Formato Adobe PDF
15.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/80509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact