The behaviour and compatibility of monoclinic sodium manganite, α-NaMnO2, cathodes at the interface with electrolytes based on the 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide (N1114FSI) ionic liquids is presented and discussed. The Na+ insertion process was analysed through cyclic voltammetry tests combined with impedance spectroscopy measurements and the cell performance was tested by charge-discharge cycles. XPS and FIB-SEM measurements allowed analysis of the surface composition and the morphology of post-mortem cathodes. Overall, the α-NaMnO2 cathode showed high reversibility in N1114FSI-based electrolyte, delivering 60 % of the initial capacity after 1200 cycles in conjunction with a Coulombic efficiency above 99 %. To our knowledge, these very promising results are the best result obtained till now for monolithic α-NaMnO2 cathodes, are ascribable to the formation of a stable passive layer onto the electrode surface, as confirmed by spectroscopic analysis.

Improved Compatibility of α-NaMnO2 Cathodes at the Interface with Ionic Liquid Electrolytes

Appetecchi G. B.
2024-01-01

Abstract

The behaviour and compatibility of monoclinic sodium manganite, α-NaMnO2, cathodes at the interface with electrolytes based on the 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide (N1114FSI) ionic liquids is presented and discussed. The Na+ insertion process was analysed through cyclic voltammetry tests combined with impedance spectroscopy measurements and the cell performance was tested by charge-discharge cycles. XPS and FIB-SEM measurements allowed analysis of the surface composition and the morphology of post-mortem cathodes. Overall, the α-NaMnO2 cathode showed high reversibility in N1114FSI-based electrolyte, delivering 60 % of the initial capacity after 1200 cycles in conjunction with a Coulombic efficiency above 99 %. To our knowledge, these very promising results are the best result obtained till now for monolithic α-NaMnO2 cathodes, are ascribable to the formation of a stable passive layer onto the electrode surface, as confirmed by spectroscopic analysis.
2024
ionic liquid electrolytes
NaMnO2
sodium-ion batteries
solid electrolyte interphase
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/80587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact