We study how the presence of an area gap, different than zero, affects the gravitational collapse of a dust ball. The implementation of such discreteness is achieved through the framework of polymer quantization, a scheme inspired by loop quantum gravity (LQG). We study the collapse using variables which represent the area, in order to impose the non-zero area gap condition. The collapse is analyzed for both the flat and spherical Oppenheimer-Snyder models. In both scenarios the formation of the singularity is avoided, due to the inversion of the velocity at finite values of the sphere surface. This happens due to the presence of a negative pressure, with origins at a quantum level. When the inversion happens inside the black hole event horizon, we achieve a geometry transition to a white hole. When the inversion happens outside the event horizon, we find a new possible astrophysical object. A characterization of such hypothetical object is done. Some constraints on the value for the area gap are also imposed in order to maintain the link with our already established physical theories.

Effective quantum gravitational collapse in a polymer framework

Montani G.
2024-01-01

Abstract

We study how the presence of an area gap, different than zero, affects the gravitational collapse of a dust ball. The implementation of such discreteness is achieved through the framework of polymer quantization, a scheme inspired by loop quantum gravity (LQG). We study the collapse using variables which represent the area, in order to impose the non-zero area gap condition. The collapse is analyzed for both the flat and spherical Oppenheimer-Snyder models. In both scenarios the formation of the singularity is avoided, due to the inversion of the velocity at finite values of the sphere surface. This happens due to the presence of a negative pressure, with origins at a quantum level. When the inversion happens inside the black hole event horizon, we achieve a geometry transition to a white hole. When the inversion happens outside the event horizon, we find a new possible astrophysical object. A characterization of such hypothetical object is done. Some constraints on the value for the area gap are also imposed in order to maintain the link with our already established physical theories.
2024
astrophysical black holes
modified gravity
quantum black holes
quantum gravity phenomenology
File in questo prodotto:
File Dimensione Formato  
Effective quantum gravitational collapse in a polymer framework.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/81067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact