This preliminary study is focused on an elemental analysis of 60 samples of different commercial grains' flour, including various typologies of refined product, researching transition metals and trace elements. All the samples were first digested with a microwave digestion system and then analyzed by a triple quadrupole (TQ) inductively coupled plasma mass spectrometer (ICP-MS-QQQ) located in a Clean Room ISO class 6. The minimum value of most of the elements (Li, Be, Na, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Se, Rb, Sr) are in the wheat flour “00” type and in the wheat flour “0” type (B, Na, Mg, Al, Cu, Ag, Cd, In, Cs, Pb, Bi). On the opposite, the maximum value of these elements is found in whole wheat flour (B, Mg, K, Ca, Mn, Zn, Ga, Rb, Sr, Ba) and in the wheat flour “0” type (Na, Al, V, Cr, Fe, Co, Ni, As). Relating rare-earth elements (REE), all of them show value similar to each other and not under the detection limits thanks to the use of a TQ in the clean room. The final aim is to create a large database, with a high data bank and easily enlargeable, that could be used in future to analyze unknown flour samples and to set up traceability analysis. The purpose of this work is to find some trends of analyzed elements in function of different parameters, such as milling degree or geographical origin, also with a statistical point of view.

Multi-elemental analysis of commercial wheat flours by ICP-MS triple quadrupole in function of the milling degree

Telloli C.;Borgognoni F.;Salvi S.;Rizzo A.
2024-01-01

Abstract

This preliminary study is focused on an elemental analysis of 60 samples of different commercial grains' flour, including various typologies of refined product, researching transition metals and trace elements. All the samples were first digested with a microwave digestion system and then analyzed by a triple quadrupole (TQ) inductively coupled plasma mass spectrometer (ICP-MS-QQQ) located in a Clean Room ISO class 6. The minimum value of most of the elements (Li, Be, Na, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Se, Rb, Sr) are in the wheat flour “00” type and in the wheat flour “0” type (B, Na, Mg, Al, Cu, Ag, Cd, In, Cs, Pb, Bi). On the opposite, the maximum value of these elements is found in whole wheat flour (B, Mg, K, Ca, Mn, Zn, Ga, Rb, Sr, Ba) and in the wheat flour “0” type (Na, Al, V, Cr, Fe, Co, Ni, As). Relating rare-earth elements (REE), all of them show value similar to each other and not under the detection limits thanks to the use of a TQ in the clean room. The final aim is to create a large database, with a high data bank and easily enlargeable, that could be used in future to analyze unknown flour samples and to set up traceability analysis. The purpose of this work is to find some trends of analyzed elements in function of different parameters, such as milling degree or geographical origin, also with a statistical point of view.
2024
Heavy metal
ICP-MS triple quadrupole
Rare-earth elements
Wheat flours
File in questo prodotto:
File Dimensione Formato  
Multi-elemental analysis of commercial wheat flours by ICP-MS triple quadrupole in function of the milling degree.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/81250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact