Several studies have demonstrated that ultraviolet-band-C (UV-C) irradiation can enhance plants’ natural resistance to pathogens and diseases. A suitable dose of UV-C radiation induces the production of metabolites that strengthen plant defenses, an effect known as “hormesis”. Hormesis presents a promising alternative that could supplement and reduce the use of pesticides, which pose risks to the environment and human health. This paper investigates the effects of UV-C radiation emitted by an array of Light-Emitting Diodes (LEDs) in generating a hormetic response in three kiwifruit species, namely A. chinensis var. deliciosa cv. Hayward, A. chinensis var. chinensis cv. Soreli®, and A. arguta plantlets, grown in vitro and in pots, exposed to the pathogen Pseudomonas syringae pv. actinidiae (Psa) either before or after UV-C irradiation. Analyses of morpho-physiological parameters and spectrophotometric assays were conducted to evaluate changes in chlorophyll a and b content, carotenoids, total phenols, and antioxidant activity in relation to the UV-C irradiation. Results indicate partial protection against Psa infection and increased levels of chlorophylls, carotenoids, polyphenols and antioxidant activity. The optimal UV-C dose was determined to be 2.2 kJ/m2 for in vitro shoots and 1.3 kJ/m2, for ex vitro plants.
Ultraviolet-C Light Effects in Actinidia spp. Infected by Pseudomonas syringae pv. actinidiae
Bollanti S.;Murra D.;Lai A.;Bacchetta L.;Di Lazzaro P.
2024-01-01
Abstract
Several studies have demonstrated that ultraviolet-band-C (UV-C) irradiation can enhance plants’ natural resistance to pathogens and diseases. A suitable dose of UV-C radiation induces the production of metabolites that strengthen plant defenses, an effect known as “hormesis”. Hormesis presents a promising alternative that could supplement and reduce the use of pesticides, which pose risks to the environment and human health. This paper investigates the effects of UV-C radiation emitted by an array of Light-Emitting Diodes (LEDs) in generating a hormetic response in three kiwifruit species, namely A. chinensis var. deliciosa cv. Hayward, A. chinensis var. chinensis cv. Soreli®, and A. arguta plantlets, grown in vitro and in pots, exposed to the pathogen Pseudomonas syringae pv. actinidiae (Psa) either before or after UV-C irradiation. Analyses of morpho-physiological parameters and spectrophotometric assays were conducted to evaluate changes in chlorophyll a and b content, carotenoids, total phenols, and antioxidant activity in relation to the UV-C irradiation. Results indicate partial protection against Psa infection and increased levels of chlorophylls, carotenoids, polyphenols and antioxidant activity. The optimal UV-C dose was determined to be 2.2 kJ/m2 for in vitro shoots and 1.3 kJ/m2, for ex vitro plants.File | Dimensione | Formato | |
---|---|---|---|
Ultraviolet-C Light Effects in Actinidia spp. Infected by Pseudomonas syringae pv. actinidiae.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.