We construct the low-frequency formulation of the turbulence characterizing the plasma in a Tokamak edge. Under rather natural assumptions, we demonstrate that, even in the presence of poloidal magnetic fluctuations, it is possible to deal with a reduced model for turbulence dynamics. This model relies on a single equation for the electric potential from which all the physical turbulent properties can be calculated. The main result of the present analysis concerns the existence of a specific Fourier branch for the dynamics which demonstrate the attractive character of the two-dimensional turbulence with respect to non-axisymmetric fluctuations. The peculiar nature of this instability, affecting the non-axially symmetric modes, is discussed in some detail by recovering two different physical regimes.

Symmetries of the Electromagnetic Turbulence in a Tokamak Edge

Montani G.;Moretti F.
2024-01-01

Abstract

We construct the low-frequency formulation of the turbulence characterizing the plasma in a Tokamak edge. Under rather natural assumptions, we demonstrate that, even in the presence of poloidal magnetic fluctuations, it is possible to deal with a reduced model for turbulence dynamics. This model relies on a single equation for the electric potential from which all the physical turbulent properties can be calculated. The main result of the present analysis concerns the existence of a specific Fourier branch for the dynamics which demonstrate the attractive character of the two-dimensional turbulence with respect to non-axisymmetric fluctuations. The peculiar nature of this instability, affecting the non-axially symmetric modes, is discussed in some detail by recovering two different physical regimes.
2024
axisymmetric modes
non-linear fluid dynamics
plasma turbulence
Tokamak edge physics
File in questo prodotto:
File Dimensione Formato  
Symmetries of the Electromagnetic Turbulence in a Tokamak Edge.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 390.15 kB
Formato Adobe PDF
390.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/81433
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact