Optical instrumentation used in space normally employs optical coatings. Future interplanetary space missions will be characterized by ever longer stays in environmental conditions where low energy protons represent one of the main types of radiation impacting the coating longevity and performance. To ensure the reliability of coated optics, environmental resistance tests should be accurately planned to be representative for a mission. To this end, the existing standards for coating tests and the test results interpretation have been constantly improved. In this study, we analyze the relevant standards of the European Space Agency (ESA) and of the Chinese Space Agency (CSA) for testing coated optics for interplanetary missions, and in particular for the missions at the Lagrange points. We focus in particular on the applicability of these standards and hence on their possible refinement when specifically implemented to the optical thin films and coatings. We proceed with the development of a methodology for reliable interpretation of the proton irradiation tests for the optical coatings for interplanetary missions, first briefly overviewing the existing tools which allow for space environment simulation and hence deriving the test conditions for the Lagrange points. Furthermore, we apply the approach to testing of aluminum oxide optical coatings for applications in the visible spectral range, concluding on the representativeness of the proposed approach and on possible refinement of the existing standards for coating tests when they are specifically developed for optical applications.

On the Representativeness of Proton Radiation Resistance Tests on Optical Coatings for Interplanetary Missions

Sytchkova A.;Protopapa M. L.;
2024-01-01

Abstract

Optical instrumentation used in space normally employs optical coatings. Future interplanetary space missions will be characterized by ever longer stays in environmental conditions where low energy protons represent one of the main types of radiation impacting the coating longevity and performance. To ensure the reliability of coated optics, environmental resistance tests should be accurately planned to be representative for a mission. To this end, the existing standards for coating tests and the test results interpretation have been constantly improved. In this study, we analyze the relevant standards of the European Space Agency (ESA) and of the Chinese Space Agency (CSA) for testing coated optics for interplanetary missions, and in particular for the missions at the Lagrange points. We focus in particular on the applicability of these standards and hence on their possible refinement when specifically implemented to the optical thin films and coatings. We proceed with the development of a methodology for reliable interpretation of the proton irradiation tests for the optical coatings for interplanetary missions, first briefly overviewing the existing tools which allow for space environment simulation and hence deriving the test conditions for the Lagrange points. Furthermore, we apply the approach to testing of aluminum oxide optical coatings for applications in the visible spectral range, concluding on the representativeness of the proposed approach and on possible refinement of the existing standards for coating tests when they are specifically developed for optical applications.
2024
aluminum oxide
ground simulation test
interplanetary missions
Lagrange points
optical coatings
optical instruments
proton irradiation
proton-induced damage
space environment
space test standards
File in questo prodotto:
File Dimensione Formato  
On the Representativeness of Proton Radiation Resistance Tests on Optical Coatings for Interplanetary Missions.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/81907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact