Featured Application: This work could be applied for producing self-cleaning solar mirrors. In this study, a low-cost, scalable and robust process is proposed as an innovative method for coating solar mirrors with a self-cleaning, transparent in the full solar range and versatile material based on auxetic aluminum nitrides, previously obtained at the laboratory scale. This work presents the scaling-up of the fabrication process from the laboratory to prototypal scale and the preliminary results of outdoor self-cleaning solar mirror field tests in the demonstrative concentrating solar power (CSP) plant ENEASHIP located in Casaccia (Rome) ENEA Research Center. Prototypes with a size of 50 × 40 cm have shown stability in external conditions: no coating degradation occurred during the test campaign. Their washing restores the initial reflectance affected by soiling and the self-cleaning performance allows for the utilization of a reduced quantity of water for cleaning operations with respect to the uncoated glass of back surface mirrors. A similar self-cleaning AlN coating could be utilized on other solar components affected by soiling, such as the glass envelopes in heat-collecting elements, PV panels and other parts where a self-cleaning performance combined with an optical one is required.

Self-Cleaning Solar Mirror Coatings: From the Laboratory Scale to Prototype Field Tests

Castaldo A.;Gambale E.;Vitiello G.;Cara G.
2024-01-01

Abstract

Featured Application: This work could be applied for producing self-cleaning solar mirrors. In this study, a low-cost, scalable and robust process is proposed as an innovative method for coating solar mirrors with a self-cleaning, transparent in the full solar range and versatile material based on auxetic aluminum nitrides, previously obtained at the laboratory scale. This work presents the scaling-up of the fabrication process from the laboratory to prototypal scale and the preliminary results of outdoor self-cleaning solar mirror field tests in the demonstrative concentrating solar power (CSP) plant ENEASHIP located in Casaccia (Rome) ENEA Research Center. Prototypes with a size of 50 × 40 cm have shown stability in external conditions: no coating degradation occurred during the test campaign. Their washing restores the initial reflectance affected by soiling and the self-cleaning performance allows for the utilization of a reduced quantity of water for cleaning operations with respect to the uncoated glass of back surface mirrors. A similar self-cleaning AlN coating could be utilized on other solar components affected by soiling, such as the glass envelopes in heat-collecting elements, PV panels and other parts where a self-cleaning performance combined with an optical one is required.
2024
AlN
Coatings
Prototype
Self-cleaning
Solar mirrors
Sputtering
Test on-field
File in questo prodotto:
File Dimensione Formato  
Self-Cleaning Solar Mirror Coatings_ From the Laboratory Scale to Prototype Field Tests.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/82207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact