Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
ENEA-IRIS Open Archive è l’archivio della produzione scientifica dell'ENEA, realizzato con l'obiettivo di raccogliere, catalogare e rendere facilmente accessibili in rete i risultati della ricerca. Gli autori dell’ENEA provvedono a depositare le proprie pubblicazioni (articoli su rivista, presentazioni a congressi, report, ecc.). In particolare, quelle finanziate dalla Commissione Europea nell’ambito del programma H2020 (che prevede il deposito obbligatorio in un Repository), una volta caricate, vengono automaticamente importate dal portale europeo OpenAIRE. È possibile inserire, o importare direttamente dalle banche dati previste, le informazioni descrittive del documento e anche allegare, ove consentito dalla normativa sul diritto d'autore, il testo completo della pubblicazione.
ENEA-IRIS Open Archive utilizza la piattaforma IRIS (Institutional Research Information System) sviluppata da CINECA.
Results on the transverse spherocity dependence of light-flavor particle production (π, K, p, ϕ, K*0, KS0, Λ, Ξ) at midrapidity in high-multiplicity pp collisions at s = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator SOpjavax.xml.bind.JAXBElement@2b3df082=1 categorizes events by their azimuthal topology. Utilizing narrow selections on SOpjavax.xml.bind.JAXBElement@324bc9b3=1, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpjavax.xml.bind.JAXBElement@7aa7d97e=1 estimator is found to effectively constrain the hardness of the events when the midrapidity (|η| < 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpjavax.xml.bind.JAXBElement@189bbb59=1.
Light-flavor particle production in high-multiplicity pp collisions at s= 13 TeV as a function of transverse spherocity
Acharya S.;Adamova D.;Aglieri Rinella G.;Agnello M.;Agrawal N.;Ahammed Z.;Ahmad S.;Ahn S. U.;Ahuja I.;Akindinov A.;Al-Turany M.;Aleksandrov D.;Alessandro B.;Alfanda H. M.;Alfaro Molina R.;Ali B.;Alici A.;Alizadehvandchali N.;Alkin A.;Alme J.;Alocco G.;Alt T.;Altamura A. R.;Altsybeev I.;Alvarado J. R.;Anaam M. N.;Andrei C.;Andreou N.;Andronic A.;Anguelov V.;Antinori F.;Antonioli P.;Apadula N.;Aphecetche L.;Appelshauser H.;Arata C.;Arcelli S.;Aresti M.;Arnaldi R.;Arneiro J. G. M. C. A.;Arsene I. C.;Arslandok M.;Augustinus A.;Averbeck R.;Azmi M. D.;Baba H.;Badala A.;Bae J.;Baek Y. W.;Bai X.;Bailhache R.;Bailung Y.;Balbino A.;Baldisseri A.;Balis B.;Banerjee D.;Banoo Z.;Barbera R.;Barile F.;Barioglio L.;Barlou M.;Barman B.;Barnafoldi G. G.;Barnby L. S.;Barret V.;Barreto L.;Bartels C.;Barth K.;Bartsch E.;Bastid N.;Basu S.;Batigne G.;Battistini D.;Batyunya B.;Bauri D.;Bazo Alba J. L.;Bearden I. G.;Beattie C.;Becht P.;Behera D.;Belikov I.;Bell Hechavarria A. D. C.;Bellini F.;Bellwied R.;Belokurova S.;Beltran Y. A. V.;Bencedi G.;Beole S.;Berdnikov Y.;Berdnikova A.;Bergmann L.;Besoiu M. G.;Betev L.;Bhaduri P. P.;Bhasin A.;Bhat M. A.;Bhattacharjee B.;Bianchi L.;Bianchi N.;Bielcik J.;Bielcikova J.;Biernat J.;Bigot A. P.;Bilandzic A.;Biro G.;Biswas S.;Bize N.;Blair J. T.;Blau D.;Blidaru M. B.;Bluhme N.;Blume C.;Boca G.;Bock F.;Bodova T.;Bogdanov A.;Boi S.;Bok J.;Boldizsar L.;Bombara M.;Bond P. M.;Bonomi G.;Borel H.;Borissov A.;Borquez Carcamo A. G.;Bossi H.;Botta E.;Bouziani Y. E. M.;Bratrud L.;Braun-Munzinger P.;Bregant M.;Broz M.;Bruno G. E.;Buckland M. D.;Budnikov D.;Buesching H.;Bufalino S.;Buhler P.;Burmasov N.;Buthelezi Z.;Bylinkin A.;Bysiak S. A.;Cai M.;Caines H.;Caliva A.;Calvo Villar E.;Camacho J. M. M.;Camerini P.;Canedo F. D. M.;Cantway S. L.;Carabas M.;Carballo A. A.;Carnesecchi F.;Caron R.;Carvalho L. A. D.;Castillo Castellanos J.;Catalano F.;Ceballos Sanchez C.;Chakaberia I.;Chakraborty P.;Chandra S.;Chapeland S.;Chartier M.;Chattopadhyay S.;Cheng T.;Cheshkov C.;Cheynis B.;Chibante Barroso V.;Chinellato D. D.;Chizzali E. S.;Cho J.;Cho S.;Chochula P.;Choudhury D.;Christakoglou P.;Christensen C. H.;Christiansen P.;Chujo T.;Ciacco M.;Cicalo C.;Cindolo F.;Ciupek M. R.;Clai G.;Colamaria F.;Colburn J. S.;Colella D.;Colocci M.;Concas M.;Conesa Balbastre G.;Conesa del Valle Z.;Contin G.;Contreras J. G.;Coquet M. L.;Cortese P.;Cosentino M. R.;Costa F.;Costanza S.;Cot C.;Crkovska J.;Crochet P.;Cruz-Torres R.;Cui P.;Dainese A.;Danisch M. C.;Danu A.;Das P.;Das S.;Dash A. R.;Dash S.;De Caro A.;de Cataldo G.;de Cuveland J.;De Falco A.;De Gruttola D.;De Marco N.;De Martin C.;De Pasquale S.;Deb R.;Del Grande R.;Dello Stritto L.;Deng W.;Dhankher P.;Di Bari D.;Di Mauro A.;Diab B.;Diaz R. A.;Dietel T.;Ding Y.;Ditzel J.;Divia R.;Dixit D. U.;Djuvsland O.;Dmitrieva U.;Dobrin A.;Donigus B.;Dubinski J. M.;Dubla A.;Dudi S.;Dupieux P.;Durkac M.;Dzalaiova N.;Eder T. M.;Ehlers R. J.;Eisenhut F.;Ejima R.;Elia D.;Erazmus B.;Ercolessi F.;Espagnon B.;Eulisse G.;Evans D.;Evdokimov S.;Fabbietti L.;Faggin M.;Faivre J.;Fan F.;Fan W.;Fantoni A.;Fasel M.;Feliciello A.;Feofilov G.;Fernandez Tellez A.;Ferrandi L.;Ferrer M. B.;Ferrero A.;Ferrero C.;Ferretti A.;Feuillard V. J. G.;Filova V.;Finogeev D.;Fionda F. M.;Flatland E.;Flor F.;Flores A. N.;Foertsch S.;Fokin I.;Fokin S.;Fragiacomo E.;Frajna E.;Fuchs U.;Funicello N.;Furget C.;Furs A.;Fusayasu T.;Gaardhoje J. J.;Gagliardi M.;Gago A. M.;Gahlaut T.;Galvan C. D.;Gangadharan D. R.;Ganoti P.;Garabatos C.;Garcia Chavez T.;Garcia-Solis E.;Gargiulo C.;Gasik P.;Gautam A.;Gay Ducati M. B.;Germain M.;Ghimouz A.;Ghosh C.;Giacalone M.;Gioachin G.;Giubellino P.;Giubilato P.;Glaenzer A. M. C.;Glassel P.;Glimos E.;Goh D. J. Q.;Gonzalez V.;Gordeev P.;Gorgon M.;Goswami K.;Gotovac S.;Grabski V.;Graczykowski L. K.;Grecka E.;Grelli A.;Grigoras C.;Grigoriev V.;Grigoryan S.;Grosa F.;Grosse-Oetringhaus J. F.;Grosso R.;Grund D.;Grunwald N. A.;Guardiano G. G.;Guernane R.;Guilbaud M.;Gulbrandsen K.;Gundem T.;Gunji T.;Guo W.;Gupta A.;Gupta R.;Gwizdziel K.;Gyulai L.;Hadjidakis C.;Haider F. U.;Haidlova S.;Hamagaki H.;Hamdi A.;Han Y.;Hanley B. G.;Hannigan R.;Hansen J.;Haque M. R.;Harris J. W.;Harton A.;Hassan H.;Hatzifotiadou D.;Hauer P.;Havener L. B.;Heckel S. T.;Hellbar E.;Helstrup H.;Hemmer M.;Herman T.;Herrera Corral G.;Herrmann F.;Herrmann S.;Hetland K. F.;Heybeck B.;Hillemanns H.;Hippolyte B.;Hoffmann F. W.;Hofman B.;Hong G. H.;Horst M.;Horzyk A.;Hou Y.;Hristov P.;Hughes C.;Huhn P.;Huhta L. M.;Humanic T. J.;Hutson A.;Hutter D.;Ilkaev R.;Ilyas H.;Inaba M.;Innocenti G. M.;Ippolitov M.;Isakov A.;Isidori T.;Islam M. S.;Ivanov M.;Ivanov V.;Iversen K. E.;Jablonski M.;Jacak B.;Jacazio N.;Jacobs P. M.;Jadlovska S.;Jadlovsky J.;Jaelani S.;Jahnke C.;Jakubowska M. J.;Janik M. A.;Janson T.;Ji S.;Jia S.;Jimenez A. A. P.;Jonas F.;Jones D. M.;Jowett J. M.;Jung J.;Jung M.;Junique A.;Jusko A.;Kaewjai J.;Kalinak P.;Kalteyer A. S.;Kalweit A.;Kaplin V.;Karasu Uysal A.;Karatovic D.;Karavichev O.;Karavicheva T.;Karczmarczyk P.;Karpechev E.;Karwowska M. J.;Kebschull U.;Keidel R.;Keijdener D. L. D.;Keil M.;Ketzer B.;Khade S. S.;Khan A. M.;Khan S.;Khanzadeev A.;Kharlov Y.;Khatun A.;Khuntia A.;Kileng B.;Kim B.;Kim C.;Kim D. J.;Kim E. J.;Kim J.;Kim J. S.;Kim M.;Kim S.;Kim T.;Kimura K.;Kirsch S.;Kisel I.;Kiselev S.;Kisiel A.;Kitowski J. P.;Klay J. L.;Klein J.;Klein S.;Klein-Bosing C.;Kleiner M.;Klemenz T.;Kluge A.;Knospe A. G.;Kobdaj C.;Kollegger T.;Kondratyev A.;Kondratyeva N.;Kondratyuk E.;Konig J.;Konigstorfer S. A.;Konopka P. J.;Kornakov G.;Korwieser M.;Koryciak S. D.;Kotliarov A.;Kovalenko V.;Kowalski M.;Kozhuharov V.;Kralik I.;Kravcakova A.;Krcal L.;Krivda M.;Krizek F.;Krizkova Gajdosova K.;Kroesen M.;Kruger M.;Krupova D. M.;Kryshen E.;Kucera V.;Kuhn C.;Kuijer P. G.;Kumaoka T.;Kumar D.;Kumar L.;Kumar N.;Kumar S.;Kundu S.;Kurashvili P.;Kurepin A.;Kurepin A. B.;Kuryakin A.;Kushpil S.;Kuskov V.;Kweon M. J.;Kwon Y.;La Pointe S. L.;La Rocca P.;Lakrathok A.;Lamanna M.;Landou A. R.;Langoy R.;Larionov P.;Laudi E.;Lautner L.;Lavicka R.;Lea R.;Lee H.;Legrand I.;Legras G.;Lehrbach J.;Lelek T. M.;Lemmon R. C.;Leon Monzon I.;Lesch M. M.;Lesser E. D.;Levai P.;Li X.;Lien J.;Lietava R.;Likmeta I.;Lim B.;Lim S. H.;Lindenstruth V.;Lindner A.;Lippmann C.;Liu D. H.;Liu J.;Liveraro G. S. S.;Lofnes I. M.;Loizides C.;Lokos S.;Lomker J.;Loncar P.;Lopez X.;Lopez Torres E.;Lu P.;Lugo F. V.;Luhder J. R.;Lunardon M.;Luparello G.;Ma Y. G.;Mager M.;Maire A.;Majerz E. M.;Makariev M. V.;Malaev M.;Malfattore G.;Malik N. M.;Malik Q. W.;Malik S. K.;Malinina L.;Mallick D.;Mallick N.;Mandaglio G.;Mandal S. K.;Manko V.;Manso F.;Manzari V.;Mao Y.;Marcjan R. W.;Margagliotti G. V.;Margotti A.;Marin A.;Markert C.;Martinengo P.;Martinez M. I.;Martinez Garcia G.;Martins M. P. P.;Masciocchi S.;Masera M.;Masoni A.;Massacrier L.;Massen O.;Mastroserio A.;Matonoha O.;Mattiazzo S.;Matyja A.;Mayer C.;Mazuecos A. L.;Mazzaschi F.;Mazzilli M.;Mdhluli J. E.;Melikyan Y.;Menchaca-Rocha A.;Mendez J. E. M.;Meninno E.;Menon A. S.;Meres M.;Mhlanga S.;Miake Y.;Micheletti L.;Mihaylov D. L.;Mikhaylov K.;Mishra A. N.;Miskowiec D.;Modak A.;Mohanty B.;Mohisin Khan M.;Molander M. A.;Monira S.;Mordasini C.;Moreira De Godoy D. A.;Morozov I.;Morsch A.;Mrnjavac T.;Muccifora V.;Muhuri S.;Mulligan J. D.;Mulliri A.;Munhoz M. G.;Munzer R. H.;Murakami H.;Murray S.;Musa L.;Musinsky J.;Myrcha J. W.;Naik B.;Nambrath A. I.;Nandi B. K.;Nania R.;Nappi E.;Nassirpour A. F.;Nath A.;Nattrass C.;Naydenov M. N.;Neagu A.;Negru A.;Nekrasova E.;Nellen L.;Nepeivoda R.;Nese S.;Neskovic G.;Nicassio N.;Nielsen B. S.;Nielsen E. G.;Nikolaev S.;Nikulin S.;Nikulin V.;Noferini F.;Noh S.;Nomokonov P.;Norman J.;Novitzky N.;Nowakowski P.;Nyanin A.;Nystrand J.;Ogino M.;Oh S.;Ohlson A.;Okorokov V. A.;Oleniacz J.;Oliveira Da Silva A. C.;Onnerstad A.;Oppedisano C.;Ortiz Velasquez A.;Otwinowski J.;Oya M.;Oyama K.;Pachmayer Y.;Padhan S.;Pagano D.;Paic G.;Paisano-Guzman S.;Palasciano A.;Panebianco S.;Park H.;Park J.;Parkkila J. E.;Patley Y.;Patra R. N.;Paul B.;Pei H.;Peitzmann T.;Peng X.;Pennisi M.;Perciballi S.;Peresunko D.;Perez G. M.;Pestov Y.;Petrov V.;Petrovici M.;Pezzi R. P.;Piano S.;Pikna M.;Pillot P.;Pinazza O.;Pinsky L.;Pinto C.;Pisano S.;Ploskon M.;Planinic M.;Pliquett F.;Poghosyan M. G.;Polichtchouk B.;Politano S.;Poljak N.;Pop A.;Porteboeuf-Houssais S.;Pozdniakov V.;Pozos I. Y.;Pradhan K. K.;Prasad S. K.;Prasad S.;Preghenella R.;Prino F.;Pruneau C. A.;Pshenichnov I.;Puccio M.;Pucillo S.;Pugelova Z.;Qiu S.;Quaglia L.;Ragoni S.;Rai A.;Rakotozafindrabe A.;Ramello L.;Rami F.;Rancien T. A.;Rasa M.;Rasanen S. S.;Rath R.;Rauch M. P.;Ravasenga I.;Read K. F.;Reckziegel C.;Redelbach A. R.;Redlich K.;Reetz C. A.;Regules-Medel H. D.;Rehman A.;Reidt F.;Reme-Ness H. A.;Rescakova Z.;Reygers K.;Riabov A.;Riabov V.;Ricci R.;Richter M.;Riedel A. A.;Riegler W.;Riffero A. G.;Ristea C.;Rodriguez M. V.;Rodriguez Cahuantzi M.;Rodriguez Ramirez S. A.;Roed K.;Rogalev R.;Rogochaya E.;Rogoschinski T. S.;Rohr D.;Rohrich D.;Rojas P. F.;Rojas Torres S.;Rokita P. S.;Romanenko G.;Ronchetti F.;Rosano A.;Rosas E. D.;Roslon K.;Rossi A.;Roy A.;Roy S.;Rubini N.;Ruggiano D.;Rui R.;Russek P. G.;Russo R.;Rustamov A.;Ryabinkin E.;Ryabov Y.;Rybicki A.;Rytkonen H.;Ryu J.;Rzesa W.;Saarimaki O. A. M.;Sadhu S.;Sadovsky S.;Saetre J.;Safarik K.;Saha P.;Saha S. K.;Saha S.;Sahoo B.;Sahoo R.;Sahoo S.;Sahu D.;Sahu P. K.;Saini J.;Sajdakova K.;Sakai S.;Salvan M. P.;Sambyal S.;Samitz D.;Sanna I.;Saramela T. B.;Sarma P.;Sarritzu V.;Sarti V. M.;Sas M. H. P.;Sawan S.;Schambach J.;Scheid H. S.;Schiaua C.;Schicker R.;Schlepper F.;Schmah A.;Schmidt C.;Schmidt H. R.;Schmidt M. O.;Schmidt M.;Schmidt N. V.;Schmier A. R.;Schotter R.;Schroter A.;Schukraft J.;Schweda K.;Scioli G.;Scomparin E.;Seger J. E.;Sekiguchi Y.;Sekihata D.;Selina M.;Selyuzhenkov I.;Senyukov S.;Seo J. J.;Serebryakov D.;Serksnyte L.;Sevcenco A.;Shaba T. J.;Shabetai A.;Shahoyan R.;Shangaraev A.;Sharma A.;Sharma B.;Sharma D.;Sharma H.;Sharma M.;Sharma S.;Sharma U.;Shatat A.;Sheibani O.;Shigaki K.;Shimomura M.;Shin J.;Shirinkin S.;Shou Q.;Sibiriak Y.;Siddhanta S.;Siemiarczuk T.;Silva T. F.;Silvermyr D.;Simantathammakul T.;Simeonov R.;Singh B.;Singh K.;Singh R.;Singh S.;Singh V. K.;Singhal V.;Sinha T.;Sitar B.;Sitta M.;Skaali T. B.;Skorodumovs G.;Slupecki M.;Smirnov N.;Snellings R. J. M.;Solheim E. H.;Song J.;Sonnabend C.;Soramel F.;Soto-hernandez A. B.;Spijkers R.;Sputowska I.;Staa J.;Stachel J.;Stan I.;Steffanic P. J.;Stiefelmaier S. F.;Stocco D.;Storehaug I.;Stratmann P.;Strazzi S.;Sturniolo A.;Stylianidis C. P.;Suaide A. A. P.;Suire C.;Sukhanov M.;Suljic M.;Sultanov R.;Sumberia V.;Sumowidagdo S.;Swain S.;Szarka I.;Szymkowski M.;Taghavi S. F.;Taillepied G.;Takahashi J.;Tambave G. J.;Tang S.;Tang Z.;Tapia Takaki J. D.;Tapus N.;Tarasovicova L. A.;Tarzila M. G.;Tassielli G. F.;Tauro A.;Tavira Garcia A.;Tejeda Munoz G.;Telesca A.;Terlizzi L.;Terrevoli C.;Thakur S.;Thomas D.;Tikhonov A.;Tiltmann N.;Timmins A. R.;Tkacik M.;Tkacik T.;Toia A.;Tokumoto R.;Tomohiro K.;Topilskaya N.;Toppi M.;Tork T.;Torres V. V.;Torres Ramos A. G.;Trifiro A.;Triolo A. S.;Tripathy S.;Tripathy T.;Trogolo S.;Trubnikov V.;Trzaska W. H.;Trzcinski T. P.;Tumkin A.;Turrisi R.;Tveter T. S.;Ullaland K.;Ulukutlu B.;Uras A.;Usai G. L.;Vala M.;Valle N.;van Doremalen L. V. R.;van Leeuwen M.;van Veen C. A.;van Weelden R. J. G.;Vande Vyvre P.;Varga D.;Varga Z.;Vargas Torres P.;Vasileiou M.;Vasiliev A.;Vazquez Doce O.;Vazquez Rueda O.;Vechernin V.;Vercellin E.;Vergara Limon S.;Verma R.;Vermunt L.;Vertesi R.;Verweij M.;Vickovic L.;Vilakazi Z.;Villalobos Baillie O.;Villani A.;Vinogradov A.;Virgili T.;Virta M. M. O.;Vislavicius V.;Vodopyanov A.;Volkel B.;Volkl M. A.;Voloshin K.;Voloshin S. A.;Volpe G.;von Haller B.;Vorobyev I.;Vozniuk N.;Vrlakova J.;Wan J.;Wang C.;Wang D.;Wang Y.;Wegrzynek A.;Weiglhofer F. T.;Wenzel S. C.;Wessels J. P.;Wiechula J.;Wikne J.;Wilk G.;Wilkinson J.;Willems G. A.;Windelband B.;Winn M.;Wright J. R.;Wu W.;Wu Y.;Xu R.;Yadav A.;Yadav A. K.;Yalcin S.;Yamaguchi Y.;Yang S.;Yano S.;Yin Z.;Yoo I. -K.;Yoon J. H.;Yu H.;Yuan S.;Yuncu A.;Zaccolo V.;Zampolli C.;Zanone F.;Zardoshti N.;Zarochentsev A.;Zavada P.;Zaviyalov N.;Zhalov M.;Zhang B.;Zhang C.;Zhang L.;Zhang M.;Zhang S.;Zhang X.;Zhang Y.;Zhang Z.;Zhao M.;Zherebchevskii V.;Zhi Y.;Zhou D.;Zhou Y.;Zhu J.;Zhu Y.;Zugravel S. C.;Zurlo N.
2024-01-01
Abstract
Results on the transverse spherocity dependence of light-flavor particle production (π, K, p, ϕ, K*0, KS0, Λ, Ξ) at midrapidity in high-multiplicity pp collisions at s = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator SOpjavax.xml.bind.JAXBElement@2b3df082=1 categorizes events by their azimuthal topology. Utilizing narrow selections on SOpjavax.xml.bind.JAXBElement@324bc9b3=1, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpjavax.xml.bind.JAXBElement@7aa7d97e=1 estimator is found to effectively constrain the hardness of the events when the midrapidity (|η| < 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpjavax.xml.bind.JAXBElement@189bbb59=1.
Hadron-Hadron Scattering Particle and Resonance Production
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/82568
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
8
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.