Assessing radiation fields in the biological shield penetrations of fusion reactors is a challenging task. At the Joint European Torus (JET) the neutron field at larger distances from the torus has been calculated and measured. JET operated in 2021–22 with a tritium-tritium plasma and neutronics experiments were performed for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the fluence of neutrons passing through the penetrations of the JET vacuum vessel and the torus hall was measured and compared with calculations in order to assess the capability of state-of-the-art numerical tools to correctly predict the radiation streaming in large and complex geometries. The neutron fluence was monitored at several locations inside the torus hall at larger distances from the tokamak with activation foils and thermo-luminescent detectors. The calculations have been performed in a two-step process using the deterministic code ADVANTG to determine the variance reduction parameters and with MCNP for subsequent calculation of the neutron field with the Monte Carlo method. The paper presents results of calculations and the first comparison to experimentally obtained values.

Characterisation of the neutron field for streaming analyses in TT operations at JET

Villari R.;
2024-01-01

Abstract

Assessing radiation fields in the biological shield penetrations of fusion reactors is a challenging task. At the Joint European Torus (JET) the neutron field at larger distances from the torus has been calculated and measured. JET operated in 2021–22 with a tritium-tritium plasma and neutronics experiments were performed for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the fluence of neutrons passing through the penetrations of the JET vacuum vessel and the torus hall was measured and compared with calculations in order to assess the capability of state-of-the-art numerical tools to correctly predict the radiation streaming in large and complex geometries. The neutron fluence was monitored at several locations inside the torus hall at larger distances from the tokamak with activation foils and thermo-luminescent detectors. The calculations have been performed in a two-step process using the deterministic code ADVANTG to determine the variance reduction parameters and with MCNP for subsequent calculation of the neutron field with the Monte Carlo method. The paper presents results of calculations and the first comparison to experimentally obtained values.
2024
Activation foils
ADVANTG
JET
MCNP
Neutron transport calculations
Streaming
TLD
TT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/82607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact