Electromagnetic ion cyclotron (EMIC) waves are known to exhibit frequency chirping occasionally, contributing to the rapid acceleration and precipitation of energetic particles in the magnetosphere. However, the chirping mechanism of EMIC waves remains elusive. In this work, a phenomenological model of whistler mode chorus waves named the Trap-Release-Amplify (TaRA) model is applied to EMIC waves. Based on the proposed model, we explain how the chirping of EMIC waves occurs, and give predictions on their frequency chirping rates. For the first time, we relate the frequency chirping rate of EMIC waves to both the wave amplitude and the background magnetic field inhomogeneity. Direct observational evidence is provided to validate the model using previously published events of chirping EMIC waves. Our results not only provide a new model for EMIC wave frequency chirping, but more importantly, they indicate the potential wide applicability of the underlying principles of TaRA model.

Frequency Chirping of Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

Zonca F.;
2024-01-01

Abstract

Electromagnetic ion cyclotron (EMIC) waves are known to exhibit frequency chirping occasionally, contributing to the rapid acceleration and precipitation of energetic particles in the magnetosphere. However, the chirping mechanism of EMIC waves remains elusive. In this work, a phenomenological model of whistler mode chorus waves named the Trap-Release-Amplify (TaRA) model is applied to EMIC waves. Based on the proposed model, we explain how the chirping of EMIC waves occurs, and give predictions on their frequency chirping rates. For the first time, we relate the frequency chirping rate of EMIC waves to both the wave amplitude and the background magnetic field inhomogeneity. Direct observational evidence is provided to validate the model using previously published events of chirping EMIC waves. Our results not only provide a new model for EMIC wave frequency chirping, but more importantly, they indicate the potential wide applicability of the underlying principles of TaRA model.
2024
EMIC wave
frequency chirping
nonlinear wave-particle interaction
TaRA model
File in questo prodotto:
File Dimensione Formato  
Frequency Chirping of Electromagnetic Ion Cyclotron Waves in Earth_s Magnetosphere.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 771.69 kB
Formato Adobe PDF
771.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/84047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact