We introduce a theoretical framework to interpret the Hubble tension, based on the combination of a metric f(R) gravity with a dynamical dark energy contribution. The modified gravity provides the non-minimally coupled scalar field responsible for the proper scaling of the Hubble constant, in order to accommodate for the local SNIa pantheon+ data and Planck measurements. The dynamical dark energy source, which exhibits a phantom divide line separating the low redshift quintessence regime (−1 < w < −1/3) from the phantom contribution (w < −1) in the early Universe, guarantees the absence of tachyonic instabilities at low redshift. The resulting H0(z) profile rapidly approaches the Planck value, with a plateau behaviour for z ≿ 5. In this scenario, the Hubble tension emerges as a low redshift effect, which can be in principle tested by comparing SNIa predictions with far sources, like QUASARS and gamma ray bursts.
Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension
Montani G.;De Angelis M.;
2024-01-01
Abstract
We introduce a theoretical framework to interpret the Hubble tension, based on the combination of a metric f(R) gravity with a dynamical dark energy contribution. The modified gravity provides the non-minimally coupled scalar field responsible for the proper scaling of the Hubble constant, in order to accommodate for the local SNIa pantheon+ data and Planck measurements. The dynamical dark energy source, which exhibits a phantom divide line separating the low redshift quintessence regime (−1 < w < −1/3) from the phantom contribution (w < −1) in the early Universe, guarantees the absence of tachyonic instabilities at low redshift. The resulting H0(z) profile rapidly approaches the Planck value, with a plateau behaviour for z ≿ 5. In this scenario, the Hubble tension emerges as a low redshift effect, which can be in principle tested by comparing SNIa predictions with far sources, like QUASARS and gamma ray bursts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Metric fR gravity with dynamical dark energy as a scenario for the Hubble tension.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

